Skip to main content
Log in

Semiemprical Estimate of the Temperature of the Medium in the Corona Discharge of a Plasma-Chemical Reactor

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Temperatures have been identified in the corona hood and streamer of a plasma-chemical reactor during the formation of a polymer film with carbon nanosized particles. A semiempirical procedure has been proposed to estimate these temperatures. It has been shown that in the case where the temperature in the streamer volume is ~600°C and it is ~1400°C in the corona hood, polycrystalline carbon nanoparticles are formed in the plasma-chemical reactor whose agglomerates penetrate into the polymer film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yasuda, Plasma Polymerization [Russian translation], Mir, Moscow (1988).

  2. E. A. Bogoslov, M. P. Danilaev, Yu. E. Pol’skii, and M. S. Pudovkin, Forming a polystyrene film in an atmosphericpressure-discharge plasma, Fiz. Khim. Obrab. Mater., No. 2, 23–27 (2016).

  3. Yu. S. Lipatov, Physicochemical Principles of Polymer Filling [in Russian], Khimiya, Moscow (1991).

  4. V. V. Zuev, S. V. Kostromin, and A. V. Shlykov, Mechanics of polymer nanocomposites modified by fulleroid fillers, Vysokomol. Soedin., Ser. A, 52, No. 2, 816–819 (2010).

  5. O. V. Kropotin, Yu. K. Mashkov, V. A. Egorova, and O. A. Kurguzova, Influence of carbon modifiers on the structure and wear resistance of polymer nanocomposites based on polytetrafluoroethylene, Zh. Tekh. Fiz., 84, No. 5, 66–71 (2014).

  6. N. N. Minakova and A. S. Silyutin, Nonlinear properties of high-strength polymer composite materials with agglomerated filler, Izv. Altaisk. Gos. Univ., No. 1 (89), 40–44 (2016).

  7. O. A. Moskalyuk, A. N. Aleshin, E. S. Tsobkallo, A. V. Krestinin, and V. E. Yudin, Electrical conductivity of polypropylene fibers with particulate carbon fillers, Fiz. Tverd. Tela, 54, No. 10, 1993–1998 (2012).

  8. I. Yu. Sapurina, M. E. Kompan, and M. A. Shishov, Composite polymer-carbon electrode material with a high electrochemical capacity, Élektrokhimiya, 51, No. 6, 606–614 (2015).

  9. P. N. Krivosheev, V. V. Leshchevich, S. Yu. Shimchenko, S. V. Shushkov, and O. G. Penyazkov, Ignitability of diesel fuel with an inclusion of ultrafine carbon particles, J. Eng. Phys. Thermophys., 90, No. 6, 1328–1333 (2017).

  10. E. A. Bogoslov, M. P. Danilaev, S. V. Drobyshev, V. A. Kuklin, I. Yu. Murav’ev, and M. M. Petrova, Photometric analysis of the concentration and allotropic form of carbon particles in transparent polymeric films, Vestn. Tekhnol. Univ., 22, No. 2, 44–48 (2019).

  11. L. Z. Boguslavskii, D. V. Vinnichenko, N. S. Nazarova, and L. E. Ovchinnikova, Physical processes of synthesis of amorphous nanocarbon from gaseous hydrocarbons by a high-frequency electric-discharge method, Vestn. Nats. Tekh. Univ. Kharkovsk. Politekh. Inst., Ser. Tekh. Elektrofiz. Vys. Napr., No. 52 (958), 25–31 (2012).

  12. Yu. P. Raizer, Gas-Discharge Physics [in Russian], Nauka, Moscow (1992).

  13. O. A. Omarov and A. A. Rukhadze, Plasma mechanism of development of initial stages of high-pressure gas breakdown, Prikl. Fiz., No. 4, 22–34 (2010).

  14. S. B. Afanas’ev, D. S. Lavrenyuk, I. N. Petrushenko, and Yu. K. Stishkov, Features of corona discharge in air, Zh. Tekh. Fiz., 78, No. 7, 30–34 (1008).

  15. Yu. K. Stishkov, A. V. Samusenko, and I. A. Ashikhmin, Corona discharge and electrogasdynamic flows in air, Usp. Fiz. Nauk, 188, No. 12, 1331–1345 (2018).

  16. I. A. Ashikhmin, A. V. Samusenko, Yu. K. Stishkov, and V. V. Yakovlev, Comprehensive study of the distinctive features of electric wind from a negative-polarity corona discharge, Zh. Tekh. Fiz., 85, No. 11, 65–72 (2015).

  17. O. V. Bolotov, V. I. Golota, V. N. Ostroushko, and G. V. Taran, Space–time structure of negative-corona radiation in a Trichel-pulse regime in the electrode system “needle–plane,” Vopr. Atomn. Nauki Tekh., No. 3 (115), 101–104 (2018).

  18. A. R. Fadaiyan and A. P. Zagozhin, Investigation into the characteristics of near-surface laser plasma as functions of the angle of incidence of double laser pulses on a multicomponent metallic target, Vestn. BGU, Ser. 1, No. 1, 22–26 (2010).

  19. V. E. Fortov (Ed.), The Encyclopedia of Low-Temperature Plasma, Part II [in Russian], Nauka, Moscow (2000).

  20. K. I. Almazov, A. N. Belonogov, V. V. Borovkov, E. V. Gorelov, I. V. Morozov, A. A. Tren’kin, and S. Yu. Kharitonov, Investigation into the dynamics of spark discharge in air in the point–plane gap by the schlieren method, Zh. Tekh. Fiz., 89, No. 1, 69–71 (2019).

  21. A. V. Luikov, Heat-Conduction Theory [in Russian], Vysshaya Shkola, Moscow (1967).

  22. A. I. Pekhovich and V. M. Zhidkikh, Calculations of the Thermal Regime of Solids [in Russian], Énergiya, Moscow (1976).

  23. P. V. Borisoglebskii, L. F. Dmokhovskaya, V. P. Larionov, Yu. S. Pintal’, D. V. Razevig, and E. Ya. Ryabkova, High-Voltage Engineering [in Russian], Gos. Énerg. Izd., Moscow (1963).

  24. G. A. Volkova and G. N. Zvereva, Parameters of barrier discharge in mixtures, Opt. Spektrosk., 96, No. 3, 419–427 (2004).

  25. M. I. Lomaev, V. S. Skakun, V. F. Tarasenko, and D. V. Shitts, Exilamps on xenon dimers with barrier-discharge excitation, Opt. Zh., 79, No. 8, 76–82 (2012).

  26. G. N. Aleksandrov, V. L. Ivanov, K. P. Kadomskaya, N. A. Kozyrev, N. A. Kostenko, G. S. Kuchinskii, I. F. Polovoi, B. M. Ryabov, and V. A. Khoberg, High-Voltage Engineering [in Russian], Vysshaya Shkola, Moscow (1973).

  27. V. A. Zakrevskii and N. T. Sudar’, Electric destruction of thin polymer films, Fiz. Tverd. Tela, 47, No. 5, 931–936 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bogoslov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1645–1651, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogoslov, E.A., Danilaev, M.P., Drobyshev, S.V. et al. Semiemprical Estimate of the Temperature of the Medium in the Corona Discharge of a Plasma-Chemical Reactor. J Eng Phys Thermophy 93, 1591–1597 (2020). https://doi.org/10.1007/s10891-020-02264-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02264-8

Keywords

Navigation