Skip to main content
Log in

Thermomechanical Improvement of Gas–Air Systems of Turbocharged Piston Internal-Combustion Engines

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Original methods for improving gas–air systems of turbocharged engines have been proposed. An analysis of the dependences of the gas-flow velocity and of the local heat-transfer coefficient in such a system on time has been made. As the criterion of assessment of the efficiency of these systems, use was made of the level of turbulence of gas flow in them and of the averaged coefficient of its heat transfer. Gasdynamic and heat-transfer characteristics of various modifications of the indicated systems have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, New York (1988).

  2. R. Z. Kavtaradze, The Theory of Piston Engines, Special Chapters [in Russian], Izd. MGU im. N. É. Baumana, Moscow (2016).

  3. N. C. B aines, Fundamentals of Turbocharging, Concepts NREC, Vermont (2005).

  4. G. Hak, Turboengines and Compressors [Russian translation], Astrel’-AST, Moscow (2003).

  5. B. P. Zhilkin, V. V. Lashmanov, L. V. Plotnikov, and D. S. Shestakov, Improving the Processes in GasAir Passages of Piston Internal-Combustion Engines [in Russian], Izd. Ural’sk. Univ., Ekaterinburg (2015).

  6. A. Romagnoli, A. Manivannan, S. Rajoo, M. S. Chiong, A. Feneley, A. Pesiridis, and R. F. Martinez-Botas, A review of heat transfer in turbochargers, Renew. Sustain. Energy Rev., 79, 1442–1460 (2017).

    Article  Google Scholar 

  7. G. A. Mukhachev and V. K. Shchukin, Thermodynamics and Heat Transfer [in Russian], Vysshaya Shkola, Moscow (1991).

  8. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, New York, 1996.

  9. I. A. Davletshin, N. I. Mikheev, A. A. Paereliy, and I. M. Gazizov, Convective heat transfer in the channel entrance with a square leading edge under forced flow pulsations, Int. J. Heat Mass Transf., 129, 74–85 (2019).

    Article  Google Scholar 

  10. L. V. Plotnikov and B. P. Zhilkin, Influence of gas-dynamical nonstationarity on local heat transfer in the gas–air passages of piston internal-combustion engines, J. Eng. Phys. Thermophys., 91, No. 6, 1444–1451 (2018).

    Article  Google Scholar 

  11. S. Buhl, D. Hain, F. Hartmann, and C. Hasse, A comparative study of intake and exhaust port modeling strategies for scale-resolving engine simulations, Int. J. Eng. Res., 19, No. 3, 282–292 (2018).

    Article  Google Scholar 

  12. M. Bordjane and D. Chalet, Analysis of the exchange process in ice using a moving mesh approach, Int. J. Fluid Mech. Res., 46, No. 1, 63–87 (2019).

    Article  Google Scholar 

  13. A. J. Torregrosa, A. Broatch, F. J. Arnau, and M. Hernandez, On the effect of different flux limiters on the performance of an engine gas exchange gas-dynamic model, Int. J. Mech. Sci., 133, 740–751 (2017).

    Article  Google Scholar 

  14. J. Jang, Y. Woo, Y. Jung, C. Cho, G. Kim, Y. Pyo, M. Han, and S. Lee, Research for intake and exhaust system parameterization of 2-cylinder gasoline engine for RE-EV, Int. J. Energy Res., 42, No. 13, 4256–4256 (2018).

    Article  Google Scholar 

  15. T. J. Wang, Optimum design for intake and exhaust system of a heavy-duty diesel engine by using DFSS methodology, J. Mech. Sci. Technol., 32, No. 7, 3465–3472 (2018).

    Article  Google Scholar 

  16. M. W. Bae, Y. J. Ku, and H. S. Park, A Study on effects of tuning intake and exhaust systems upon exhaust emissions in a driving car of gasoline engine, Trans. Kor. Soc. Mech. Eng. B, 43, No. 5, 379–388 (2019).

    Article  Google Scholar 

  17. C.-C. Ma, L.-W. Sun, N. Fang, and H. Zhang, Effects of the exhaust system on the performance of a turbocharged diesel engine, Trans. Beijing Inst. Technol., 37, No. 9, 919–925 (2017).

    Google Scholar 

  18. Y. Oghabneshin, S. Seddighi, M. Zabetian, and A. Mohammadebrahim, Experimental and numerical analysis of the incylinder swirl flow dependence on the pressure, Heat Mass Transf., 54, No. 12, 3547–3558 (2018).

    Article  Google Scholar 

  19. H. Mezher, D. Chalet, V. Raimbault, and J. Migaud, Wave dynamics analysis at the intake of a turbocharged engine: concept proposal of a new active inlet charge air duct for low-speed tuning and high-speed permeability, Proc. Inst. Mech. Eng. Part D –– J. Automobile Eng., 230, No. 2, 160–174 (2016).

    Article  Google Scholar 

  20. Y. A. Grishin, V. A. Zenkin, and R. N. Khmelev, Boundary conditions for numerical calculation of gas exchange in piston engines, J. Eng. Phys. Thermophys., 90, No. 4, 965–970 (2017).

    Article  Google Scholar 

  21. C. I. Leahu, Improvement of exhaust gas pressure’s utilization for compressing the intake air in diesel engine’s cylinders, Int. J. Automot. Technol., 16, No. 6, 913–921 (2015).

    Article  Google Scholar 

  22. S. Yang, K. Deng, Y. Cui, and H. Gu, A study on an automatically variable intake exhaust injection timing turbocharging system for diesel engines, J. Eng. Gas Turbines Power, 132, No. 5, Article 052803 (2010).

  23. Yu. A. Grishin, Interaction of pulses of nonstationary gas flow with the turbine, Dvigatelestroenie, No. 2 (268), 11–14 (2017).

  24. D. S. Shestakov and I. E. Pronin, Tuning of the operating process of 8DM21/21 diesel locomotive engines with a TCR size turbocompressor, Dvigatelestroenie, No. 3 (269), 9–13 (2017).

  25. P. Bradshaw, An Introduction to Turbulence and Its Measurement [Russian translation], Mir, Mashinostroenie (1974).

  26. J. F. Foss, J. A. Peabody, M. J. Norconk, and A. R. Lawrenz, Ambient temperature and free stream turbulence effects on the thermal transient anemometer, Meas. Sci. Technol., 17, No. 9, 2519–2526 (2006).

    Article  Google Scholar 

  27. C. Henselowsky, H. C. Kuhlmann, and H. J. Rath, Experimental setup for low Reynolds number calibration of thermal anemometers, Z. Angew. Math. Mech., 80, No. 4, 685–686 (2000).

    MATH  Google Scholar 

  28. B. T. Skelly, D. R. Miller, and T. H. Meyer, Triple-hot-film anemometer performance in CASES-99 and a comparison with sonic anemometer measurements, Boundary-Layer Meteorol., 105, No. 2, 275–304 (2002).

    Article  Google Scholar 

  29. L. V. Plotnikov and B. P. Zhilkin, Specific aspects of the thermal and mechanic characteristics of pulsating gas flows in the intake system of a piston engine with a turbocharger system, Appl. Therm. Eng., 160, Article 114123 (2019).

  30. S. A. Isaev, A. I. Leontiev, N. V. Kornev, E. Hassel, and Y. P. Chudnovskii, Heat transfer intensification for laminar and turbulent flows in a narrow channel with one-row oval dimples, High Temp., 53, No. 3, 375–386 (2015).

    Article  Google Scholar 

  31. Y. M. Brodov, N. I. Grigoryev, B. P. Zhilkin, L. V. Plotnikov, and D. S. Shestakov, Increasing reliability of gas–air systems of piston and combined internal combustion engines by improving thermal and mechanic flow characteristics, Therm. Eng., 62 , No. 14, 1038–1042 (2015).

    Article  Google Scholar 

  32. S. A. Isaev, A. V. Schelchkov, A. I. Leontiev, P. A. Baranov, and M. F. Gulcova, Numerical simulation of the turbulent air flow in the narrow channel with a heated wall and a spherical dimple placed on it for vortex heat transfer enhancement depending on the dimple depth, Int. J. Heat Mass Transf., 94, 426–448 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Plotnikov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1612–1621, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, L.V., Zhilkin, B.P. & Brodov, Y.M. Thermomechanical Improvement of Gas–Air Systems of Turbocharged Piston Internal-Combustion Engines. J Eng Phys Thermophy 93, 1557–1566 (2020). https://doi.org/10.1007/s10891-020-02260-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02260-y

Keywords

Navigation