Skip to main content
Log in

Reduction of Hydrodynamic Mixing Models on the Basis of the DMD Algorithm

  • HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An Author Correction to this article was published on 01 January 2021

This article has been updated

With the use of decomposition into dynamic modes, reduced models of hydrodynamic mixing have been constructed and rather exact space–time pictures of impurity distribution for various periodic regimes of mixing have been obtained with substantial reduction of computational expenditures. It is shown that after processing the results of solution of the problem on mixing in a rectangular cavern with mobile bottom and lid by the DMD method, the gain in the information storage amounts to more than 80%. The proposed approach can also be applied for processing experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. S. K. Savel’ev and A. V. Chesnokov, Identification of flows by the local disturbance method, J. Eng. Phys. Thermophys., 90, No. 4, 1040–1043 (2017).

  2. K. N. Volkov, S. V. Denisikhin, and V. N. Emel’yanov, Gas dynamics of a recessed nozzle on its displacement in the radial direction, J. Eng. Phys. Thermophys., 90, No. 4, 979–987 (2017).

  3. K. G. Dobrosel’skii, Use of the PIV method for investigation of motion near a cylinder in transverse flow, J. Eng. Phys. Thermophys., 89, No. 3, 687–693 (2016).

  4. J. L. Lumley, Stochastic Tools in Turbulence, Academic Press, New York (1970).

  5. H. M. Раrk, O. Y. Chung, and J. H. Lee, On the solution of inverse heat transfer problem using the Karhunen–Loève Galerkin method, Int. J. Heat Mass Transf., 42, No. 1, 127–142 (1999).

    Article  Google Scholar 

  6. O. M. Alifanov, A. V. Nenarokomov, S. A. Budnik, V. V. Michailov, and V. M. Ydin, Identification of thermal properties of materials with applications for spacecraft structures, Inv. Probl. Sci. Eng., 12, No. 5, 579–594 (2004).

    Article  MathSciNet  Google Scholar 

  7. B. R. Noack, K. Afanasiev, M. Morzynsk, G. Tadmor, and F. Thiele, A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech. 497, 335–363 (2003).

    Article  MathSciNet  Google Scholar 

  8. I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlin. Dyn., 41, Nos. 1–3, 309–325 (2005).

  9. P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5–28 (2010).

    Article  MathSciNet  Google Scholar 

  10. P. J. Schmid, L. Li, M. P. Juniper, and O. Pust, Applications of the dynamic mode decomposition, Theor. Comput. Fluid Dyn., 25, Nos. 1–4, 249–259 (2011).

  11. M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition, J. Nonlin. Sci., 25, No. 6, 1307–1346 (2015).

    Article  MathSciNet  Google Scholar 

  12. B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz, Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition, J. Neurosci. Methods, 258, 1–15 (2016).

    Article  Google Scholar 

  13. J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, On dynamic mode decomposition: Theory and applications, J. Comput. Dyn., 1, No. 2, 391–421 (2014).

    Article  MathSciNet  Google Scholar 

  14. C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson, Spectral analysis of nonlinear flows, J. Fluid Mech., 641, 115–127 (2009).

    Article  MathSciNet  Google Scholar 

  15. A. K. Alekseev and A. E. Bondarev, On the Application of Decomposition into Dynamic Modes in the Problems of Computational Gas Dynamics, Preprint No. 151 of M. V. Keldysh Inst. of Appl. Math., Moscow (2018).

  16. A. K. Alekseev, D. A. Bistrian, A. E. Bondarev, and I. M. Navon, On linear and nonlinear aspects of dynamic mode decomposition, Int. J. Numer. Meth. Fluid, 82, 348–371 (2016).

    Article  MathSciNet  Google Scholar 

  17. R. F. Ganiev, D. L. Reviznikov, and L. E. Ukrainskii, Wave mixing, Nelin. Dinam., 4, No. 4, 483–496 (2008).

  18. C. W. Leong and J. M. Ottino, Experiments on mixing due to chaotic advection in a cavity, J. Fluid Mech., 209, 463–499 (1989).

    Article  MathSciNet  Google Scholar 

  19. J. M. Ottino, The mixing of fluids, Sci. Am., 260, 56–67 (1989).

    Article  Google Scholar 

  20. R. F. Ganiev, D. L. Reviznikov, T. Yu. Sukharev, and L. E. Ukrainskii, Wave mixing in installations of vibrational type, Probl. Mashinostr. Nadezhn. Mashin, No. 3, 5–10 (2017).

  21. R. F. Ganiev, D. L. Reviznikov, T. Yu. Sukharev, and L. E. Ukrainskii, Optimization of spatial location of the working elements in installations of vibrational type, Probl, Mashinostr. Nadezhn. Mashin, No. 1, 3–8 (2018).

  22. R. F. Ganiev, D. L. Reviznikov, T. Yu. Sukharev, and L. E. Ukrainskii, Influence of the shape of the blade on the efficiency of mixing in installations of vibrational type, Probl. Mashinostr. Nadezhn. Mashin, No. 2, 3–8 (2019).

  23. R. F. Ganiev, D. L. Reviznikov, T. Yu. Sukharev, and L. E. Ukrainskii, Profiling the surfaces of the working elements of mixing devices, Probl. Mashinostr. Nadezhn. Mashin, No. 3, 3–9 (2019).

  24. R. F. Ganiev, D. L. Reviznikov, T. Yu. Sukharev, and L. E. Ukrainskii, Wave mixing in the system of mobile coaxial cylinders, Dokl. Akad. Nauk, 486, No. 1, 30–33 (2019).

    Google Scholar 

  25. Y. Susuki, I. Mezić, F. Raak, and T. Hikihara, Applied Koopman operator theory for power systems technology, Nonlin. Theory Appl., 7, No. 4, 430–459 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Reviznikov.

Additional information

T. Yu. Sukharev is Deceased

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1584–1592, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukharev, T.Y., Reviznikov, D.L. Reduction of Hydrodynamic Mixing Models on the Basis of the DMD Algorithm. J Eng Phys Thermophy 93, 1529–1537 (2020). https://doi.org/10.1007/s10891-020-02257-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02257-7

Keywords

Navigation