Skip to main content
Log in

Theoretical Representations of the Thermokinetics of Thermal Destruction of Polymers

  • HEAT CONDUCTION AND HEAT TRANSFER IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A generalized theory of the thermokinetics of the process of thermal destruction of polymer materials has been developed in the context of the kinetic thermofluctuating concept based on unification of a number of independent approaches, namely, structurally kinetic (for describing elementary acts of the destruction process), mechanical (for describing the local stress at the crack tip), thermodynamic (for calculating the value of safe stress). The developed model concepts are based on experimental data relating to accumulation of disturbances in loaded samples; on force disturbances and ruptures of bonds in the vicinity of the crack tip; on submicroscopic cracks and their characteristics; fractographic investigations of the rupture face; and on the kinetic of growth of a main crack. A generalized formula of the rate of crack growth is given, the tensor of stresses at the crack tip in the conditions of mechanical and thermal loadings is calculated, the main parameters and limiting characteristics on mechanical and thermal loading of a polymer sample are calculated, a theoretical relation of the time dependence of strength in the case of a purely thermal loading in the full interval of thermal loadings from a safe to a critical one and at the stage of athermal growth of the crack has been suggested. Numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. M. Kartashov, B. Tsoi, and V. A. Shevelev, Destruction of Films and Fibers. Structural-Statistical Aspects [in Russian], URSS, Moscow (2015).

    Google Scholar 

  2. B. S. Petukhov and L. G. Genin, Heat Transfer in Nuclear Power Engineering Installations [in Russian], Atomizdat, Moscow (1974).

    Google Scholar 

  3. V. M. Marchenko, Temperature Fields and Stresses in Constructions of Flying Vehicles [in Russian], Mashinostroenie, Moscow (1962).

    Google Scholar 

  4. O. M. Belotserkovskii (Ed.), Problems of the Mechanics and Heat Transfer in Space Technology [in Russian], Mashinostroenie, Moscow (1982).

    Google Scholar 

  5. B. M. Galitseiskii, V. D. Sovershennyi, and V. F. Formalev, Thermal Protection of Turbine Blades [in Russian], Izd. MAI, Moscow (1996).

    Google Scholar 

  6. K. S. Demirchan and P. A. Buryrin, Modeling and Machine Calculation of Electric [in Russian], Vysshaya Shkola, Moscow (1988).

    Google Scholar 

  7. A. A. Askadskii, Structure and Properties of Polymers [in Russian], Khimiya, Moscow (1981).

    Google Scholar 

  8. Yu. K. Godovskii, Thermophysics of Polymers [in Russian], Khimiya, Moscow (1982).

    Google Scholar 

  9. Yu. V. Polezhaev and F. B. Yurevich, Heat Shielding [in Russian], Énergiya, Moscow (1976).

    Google Scholar 

  10. S. Madorskii, Thermal Decomposition of Organic Polymers [in Russian], Mir, Moscow (1967).

    Google Scholar 

  11. O. F. Shlenskii, N. V. Afanas’ev, and A. G. Shashkov, Thermal Destruction of Materials [in Russian], Énergoatomizdat, Moscow (1996).

    Google Scholar 

  12. V. V. Panasyuk, A. V. Andreikiv, and V. Z. Parton, Principles of the Mechanics of Destruction of Materials. Mechanics of Destruction [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  13. M. P. Savruk, Coefficients of the Intensity of Stresses in Bodies with Cracks. Mechanics of Destruction [in Russian], Vol. 2, Naukova Dumka, Kiev (1988).

    Google Scholar 

  14. V. M. Finkel’, Physical Principles of Destruction Retardation [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  15. É. M. Kartashov and V. Z. Parton, Dynamical thermoelasticity in the problem of the thermal shock (Review), in: The Outcomes of Science and Technology Series: Mechanics of the Deformed Solid Body, VINITI, Moscow (1991), Vol. 22, pp. 55−127.

    Google Scholar 

  16. É. M. Kartashov, Problem of thermal shock in the region with a moving boundary on the basis of new integral relations, Izv. Ross. Akad. Nauk, Énerget., No. 4, 122−137 (1997).

    MATH  Google Scholar 

  17. É. M. Kartashov, Modern representation of the kinetic thermofluctuational theory of strength of polymers (Review), Itogi Nauki Tekh. Ser.: Khim. Tekhol. VMS, VINITI, Moscow (1991), Vol. 27, pp. 3−122.

    Google Scholar 

  18. V. R. Regel’, A. I. Slutsker, and É. E. Tomashevskii, Kinetic Theory of the Strength of Solid Bodies [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  19. Ya. I. Frenkel′, Kinetic Theory of Liquids [in Russian], Izd. AN SSSR, Leningrad (1945).

    Google Scholar 

  20. G. M. Bartenev, Strength and Mechanisms of Destruction of Polymers [in Russian], Khimiya, Moscow (1984).

    Google Scholar 

  21. A. I. Gubanov and A. D. Chevychelov, Toward the theory of tensile strength of solid polymers, Fiz. Tverd. Tela, 4, No. 4, 928−933 (1962).

    Google Scholar 

  22. F. Kerkhoff, Bruchvorgänge in Gläsern, Verlag der Deutschen Glastechn. Gesellschaft, Frankfurt (1970).

    Google Scholar 

  23. E. A. Kuz’min and V. P. Pukh, Some Problems of the Solid Body Strength [in Russian], Izd. AN SSSR, Moscow–Leningrad (1959).

    Google Scholar 

  24. G. M. Bartenev, I. V. Razumovskaya, and P. A. Rebinder, Toward the theory of spontaneous dispersion of solid bodies, Kolloid. Zh., 20, No. 5, 654−664 (1958).

    Google Scholar 

  25. N. A. Zlatin, S. M. Mochalov, G. S. Pugachev, and G. S. Bragov, Time laws governing the destruction of metals on intense loadings, Fiz. Tverd. Tela, 16, No. 6, 1752−1755 (1974).

    Google Scholar 

  26. G. R. Irvin, Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., 24, No. 3, 361−364 (1957).

    Google Scholar 

  27. É. M. Kartashov and V. A. Kudinov, Analytical Theory of Thermal conductivity and of Applied Thermoelasticity [in Russian], URSS, Moscow (2012).

    Google Scholar 

  28. É. M. Kartashov, The Griffith energy problem for brittle polymers, J. Eng. Phys. Thermophys., 80, No. 1, 166−175 (2007).

    Article  Google Scholar 

  29. V. V. Shevelev and É. M. Kartashov, On the threshold stress of polymers in a brittle stress, Dokl. Ross. Akad. Nauk, 338, No. 6, 748−751 (1994).

    Google Scholar 

  30. V. V. Shevelev, Brittle-fracture criterion and durability of materials under thermomechanical action, J. Eng. Phys. Thermophys., 81, No. 2, 420−427 (2008).

    Article  Google Scholar 

  31. V. V. Shevelev, Fracture criterion and durability of brittle materials under conditions of stationary heat and mass transfer, J. Eng. Phys. Thermophys., 83, No. 1, 52–59 (2010).

    Article  Google Scholar 

  32. É. M. Kartashov, Analytical Methods in the Theory of the Thermal Conductivity of Solid Bodies [in Russian], Vysshaya Shkola, Moscow (2001).

    Google Scholar 

  33. É. M. Kartashov, Originals of operational images for generalized problems of nonstationary thermal conductivity, Tonk. Khim. Tekhol., 14, No. 4, 77−86 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to É. M. Kartashov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1529–1542, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartashov, É.M. Theoretical Representations of the Thermokinetics of Thermal Destruction of Polymers. J Eng Phys Thermophy 93, 1476–1488 (2020). https://doi.org/10.1007/s10891-020-02253-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02253-x

Keywords

Navigation