Skip to main content
Log in

Physical Mechanisms and Conditions of Excitation of Vibratory Combustion of Solid Fuels

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The authors have obtained experimental characteristics of the self-oscillating process of vibratory combustion of a solid fuel. As a result of the analysis of the obtained diagrams of amplitude and frequency characteristics of the self-oscillating process of vibratory combustion of a solid fuel depending on the position of the combustion zone in a Riecke tube, the fuel structure, and methods of charging, the authors have made the following assumption. Two types of processes coexist during the vibratory combustion of a solid fuel: for the fundamental harmonics of the oscillating process of low frequency, the energy approach known in the literature, and for harmonics of higher frequency, the vortex mechanism. Methods of experimental verification of this assumption have been developed and used. Experimental results confirm the proposed model of vibratory combustion of a solid fuel. A theoretical computational procedure for the development of vibratory combustion has been worked out. A theoretical study of the motion of a combustion wave at stochastic parameters of the process of heat release has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Raushenbakh, Vibratory Combustion [in Russian], Izd. Fizmatlit, Moscow (1961).

    Google Scholar 

  2. V. T. Kozyrev, Self-Oscillating Aerothermoacoustics of Gas-Turbine Engines [in Russian], Izd. MGTU im. N. É. Baumana, Moscow (2005).

    Google Scholar 

  3. V. M. Larionov and L. G. Zaripov, Self-Oscillations of a Gas in Combustion Plants [in Russian], Izd. GTU, Kazan (2003).

    Google Scholar 

  4. S. E. Filippov, Mechanisms of Excitation and Theoretical Models of Oscillations of the Gas in Installations for Pulsatory Combustion of a Solid Fuel, Candidate’s Dissertation in Technical Sciences, Kazan (2008).

    Google Scholar 

  5. D. B. Spalding, Combustion and Mass Transfer, Elsevier (1978).

  6. C. K. Law, Combustion Physics, Cambridge University Press, Cambridge (2006).

    Book  Google Scholar 

  7. I. L. Mostinskii, D. I. Lamden, and O. G. Stonik, Influence of pulsations of the flow on heat and mass exchange with particles, Teplofiz. Vys. Temp., 21, No. 4, 752–758 (1983).

    Google Scholar 

  8. A. I. Lur’e, Operational Calculus and Its Application to Mechanics Problems [in Russian], Gostekhizdat, Moscow (1938).

    Google Scholar 

  9. S. H. Shreekrishna and T. Lieuwen, Premixed flame response to equivalence ratio perturbations, Combust. Theory Model, 14, No. 5, 681–714 (2010).

    Article  Google Scholar 

  10. X. Wu and P. Moin, Large-activation energy theory for premixed combustion under the influence of enthalpy fluctuations, J. Fluid Mech., 655, 3–37 (2010).

    Article  MathSciNet  Google Scholar 

  11. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  12. G. I. Ksandopulo and V. V. Dubinin, Chemistry of Gas-Phase Combustion [in Russian], Khimiya, Moscow (1987).

    Google Scholar 

  13. W. C. Gardiner, Jr., Combustion Chemistry: Collected Papers [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  14. V. M. Kholopov and S. I. Khudyaev, On the asymptotic theory of the combustion wave of a gas mixture, Khim. Fiz., 20, No. 1, 62–68 (2001).

    Google Scholar 

  15. A. G. Istratov and V. B. Librovich, On the influence of transfer processes on the stability of a plane fl ame front, Prikl. Mat. Mekh., 30, 451–466 (1966).

    Google Scholar 

  16. V. V. Bychkov and M. A. Liberman, Dynamics and stability of premixed flames, Phys. Rep., 325, 115–237 (2000).

    Article  MathSciNet  Google Scholar 

  17. A. P. Aldushin, B. J. Matkowsky, and V. A. Volpert, Stoichiometric flames and their stability, Combust. Flame, 101, 15–25 (1995).

    Article  Google Scholar 

  18. E. Robert and P. A. Monkewitz, Experiments in a novel quasi — 1D diffusion flame with variable bulk flow, Proc. Combust. Inst., 32, 987–994 (2009).

    Article  Google Scholar 

  19. Yu. A. Gostintcev, A. G. Istratov, and Yu. V. Shulenin, Self-similar propagation of a free turbulent — Flame in mixed gas mixtures, Combust. Explos. Shock Waves, 24, No. 5, 563–569 (1989).

    Article  Google Scholar 

  20. S. Chaudhuri, V. Akkerman, and C. K. Law, Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability, Phys. Rev. E, 84, No. 2, 026322(14) (2011).

  21. S. Fedotov, Scaling and renormalization for the Kolmogorov–Petrovskii–Piskunov equation with turbulent convection, Phys. Rev. E, 55, No. 3, 2750–2756 (1977).

    Article  MathSciNet  Google Scholar 

  22. K. P. Zybin, V. A. Sirota, A. S. Il’in, and A. V. Gurevich, Generation of small-scale structures in developed turbulence, Zh. Éksp. Teor. Fiz., 132, No. 2(8), 510–523 (2007).

  23. J. Daou, Premixed flames with a reversible reaction: propagation and stability, Combust. Theory Model., 12, No. 2, 349–365 (2008).

    Article  MathSciNet  Google Scholar 

  24. J. Masoliver and K.-G. Wang, Free inertial processes driven by Gaussian noise: Probability distributions, anomalous diffusion, and fractal behavior, Phys. Rev. E, 51, No. 4, 2987–2995 (1995).

    Article  Google Scholar 

  25. V. N. Kondrat’ev and E. E. Nikitin, Chemical Processes in Gases [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  26. Ya. B. Zel’dovich and A. S. Mikhailov, Fluctuation kinetics of reactions, Usp. Fiz. Nauk, 153, No. 3, 469–496 (1987).

    Article  Google Scholar 

  27. V. G. Medvedev, V. G. Telegin, and G. G. Telegin, Statistical analysis of the kinetics of adiabatic thermal explosion, Fiz. Goreniya Vzryva, 45, No. 3, 44–48 (2009).

    Google Scholar 

  28. H. Risken, The Fokker–Planck Equation, Springer-Verlag, Berlin (1989).

    Book  Google Scholar 

  29. K. S. Fa, Solution of Fokker–Planck equation for a broad class of drift and diffusion coefficients, Phys. Rev. E, 84, 012102(4) (2011).

  30. F. Langouch, D. Roekaerts, and E. Tirapegue, Functional Integration and Semiclassical Expansions, Springer, Dordrecht (1982).

    Book  Google Scholar 

  31. V. I. Popov, Intensification of the process of flame combustion of a pulverized coal fuel, J. Eng. Phys. Thermophys., 90, No. 6, 1344−1352 (2017).

    Article  Google Scholar 

  32. K. Yu. Vershinina, D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental study of the ignition of single drops of coal suspensions and coal particles in the oxidizer flow, J. Eng. Phys. Thermophys., 90, No. 1, 198−205 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Geshele.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1502–1512, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stonik, O.G., Geshele, V.D. & Kovalev, S.A. Physical Mechanisms and Conditions of Excitation of Vibratory Combustion of Solid Fuels. J Eng Phys Thermophy 93, 1449–1459 (2020). https://doi.org/10.1007/s10891-020-02250-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02250-0

Keywords

Navigation