Skip to main content
Log in

On the Mechanism of Detonation Combustion of Nanostructured Silicon with a Solid-Phase Oxidant

  • HEAT AND MASS TRANSFER IN COMBUSTION PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The physical mechanism of detonation combustion of nanostructured silicon with a solid-phase oxidant at a velocity of the combustion front of 1000–3000 m/s has been proposed. Thermodynamic characteristics of combustion of model solid-phase mixtures “silicon–ammonium perchlorate” with different equivalent ratios of their components have been calculated at different pressures. It has been established that a characteristic feature of detonation combustion of nanostructured silicon with a solid-phase oxidant is the stationary velocity of motion of the detonation front with a significant defect (10–15%) with respect to the Chapman–Jouguet detonation velocity. The detonation (supersonic) and subsonic regimes of combustion of nanostructured silicon with a solid-phase oxidant have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kovalev, V. Y. Timoshenko, N. Kunzner, E. Gross, and F. Koch, Strong explosive interaction of hydrogenated porous silicon with oxygen at cryogenic temperatures, Phys. Rev. Lett., 87, No. 6, 068301 (2001).

    Article  Google Scholar 

  2. F. V. Mikulec, J. D. Kirtland, and M. J. Sailor, Explosive nanocrystalline porous silicon and its use in atomic emission spectroscopy, Adv. Mater., 14, No. 1, 38–41 (2002).

    Article  Google Scholar 

  3. D. Clement, J. Diener, E. Gross, N. Kunzner, V. Y. Timoshenko, and D. Kovalev, Highly explosive nanosilicon-based composite materials, Phys. Status Solidi A, 202, No. 8, 1357–1361 (2005).

    Article  Google Scholar 

  4. S. K. Lazarouk, A. V. Dolbik, P. V. Jaguiro, V. A. Labunov, and V. E. Borisenko, Fast exothermic processes in porous silicon, Semiconductors, 39, 881–883 (2005).

    Article  Google Scholar 

  5. M. Du Plessis, Properties of porous silicon nano-explosive devices, Sens. Actuators A, 135, 666–674 (2007).

    Article  Google Scholar 

  6. W. Churaman, L. Currano, and C. Becker, Initiation and reaction tuning of nanoporous energetic silicon, J. Phys. Chem. Solids, 71, 69–74 (2010).

    Article  Google Scholar 

  7. N. W. Piekiel, Chr. J. Morris, W. A. Churaman, M. E. Cunningham, D. M. Lunking, and L. J. Currano, Combustion and material characterization of highly tunable on-chip energetic porous silicon, Propel. Explos. Pyrotech., 40, 16–26 (2010).

    Article  Google Scholar 

  8. C. R. Becker, S. Apperson, C. J. Morris, S. Gangopadhyay, L. J. Currano, W. A. Churaman, and C. R. Stoldt, Galvanic porous silicon composites for high-velocity nanoenergetics, Nano Lett., 11, 803–807 (2011).

    Article  Google Scholar 

  9. A. Plummer, V. Kuznetsov, T. Joyner, J. Shapter, and N. H. Voelcker, The burning rate of energetic fi lms of nanostructured porous silicon, Small, 7, 3392–3398 (2011).

    Article  Google Scholar 

  10. V. S. Parimi, A. Bermúdez Lozda, S. A. Tadigadapa, and R. A. Yetter, Reactive wave propagation in energetic porous silicon composites, Combust. Flame, 161, 2991–2999 (2014).

    Article  Google Scholar 

  11. V. S. Parimi, S. A. Tadigadapa, and R. A. Yetter, Reactive wave propagation mechanisms in energetic porous silicon composites, Combust. Sci. Technol., 187, Nos. 1–2, 249–268 (2015).

    Article  Google Scholar 

  12. V. N. Mironov, O. G. Penyazkov, P. N. Krivosheev, E. A. Baranyshin, E. S. Golomako, and A. V. Sokolov, Distinctive features of combustion of porous silicon in oxygen at elevated pressures and in the atmosphere in the system "porous silicon–sodium perchlorate," in: Heat and Mass Transfer–2018, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk (2019), pp. 152–162.

  13. V. N. Mironov, O. G. Penyazkov, K. N. Kasparov, E. A. Baranyshin, I. A. Ivanov, E. A. Vyazova, K. I. Delendik, and L. Yu. Roshchin, On the dynamics and temperature of combustion of a thin porous silicon layer in an oxygen medium, in: Heat and Mass Transfer–2016, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk (2017), pp. 101–114.

    Google Scholar 

  14. V. N. Mironov, O. G. Penyazkov, P. N. Krivosheev, E. A. Baranyshin, E. S. Golomako, and A. V. Sokolov, Regimes and rates of combustion of porous silicon in oxygen at pressures of 2 to 35 bar, in: Heat and Mass Transfer–2018, A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Minsk (2019), pp. 141–151.

    Google Scholar 

  15. S. I. Futko, I. A. Koznacheev, O. S. Rabinovich, O. G. Penyazkov, P. N. Krivosheev, On the mechanism of combustion of thin nanostructurized silicon plates in oxygen at an elevated pressure, J. Eng. Phys. Thermophys., 92, No. 1, 1–11 (2019).

    Article  Google Scholar 

  16. Ya. B. Zel’dovich and A. S. Kompaneets, Detonation Theory [in Russian], Gos. Izd. Tekh.-Teor. Lit., Moscow (1955).

    Google Scholar 

  17. I. Schumacher, Perchlorates: Their Properties, Manufacture, and Uses [in Russian], Goskhimizdat, Moscow (1963).

    Google Scholar 

  18. B. A. Mason, L. J. Groven, S. F. Son, and R. A. Yetter, Combustion performance of several nanosilicon-based nanoenergetics, J. Propuls. Power, 29, No. 6, 1435–1444 (2013).

    Article  Google Scholar 

  19. M. Tanaka and M. W. Beckstead, Three phase combustion model of ammonium perchlorate, Proc. AIAA/ASME/SAE/ ASEE 32nd Joint Propuls. Conf., AIAA Paper 96–2888.20 (1996).

    Google Scholar 

  20. R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Report SAND89-8009, Sandia National Lab. (1989).

  21. M. E. Coltrin, R. J. Kee, F. M. Rupley, and E. Meeks, Surface Chemkin III: a Fortran Package for Analyzing Heterogeneous Chemical Kinetics at a Solid-Surface–Gas-Phase Interface, Report SAND96-8217, Sandia National Lab. (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Krivosheyev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1492–1501, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivosheyev, P.N., Mironov, V.N., Penyazkov, O.G. et al. On the Mechanism of Detonation Combustion of Nanostructured Silicon with a Solid-Phase Oxidant. J Eng Phys Thermophy 93, 1439–1448 (2020). https://doi.org/10.1007/s10891-020-02249-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02249-7

Keywords

Navigation