Skip to main content
Log in

Raising the Efficiency of Coagulation of Dispersed Particles by the Action of Ultrasonic Vibrations on Gas-Dispersed Flows in Inertial Dust Collectors

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The authors have presented results of experiential investigations of the process of ultrasonic coagulation of dispersed particle in a swirling flow. The investigations were conducted using the proposed and developed test bed implementing a two-stage removal of fi ne particles. At the first stage (agglomeration), the formation of a swirling flow and the ultrasonic pre-coagulation of fi ne particles are ensured. At the second stage, high-efficiency trapping of particles preformed at the first stage is attained using a cyclone. As a result of the experimental investigations, the authors have established the prospects of using a two-stage removal of fi ne particles and have revealed the optimum conditions of ultrasonic action on a swirling gas-dispersed flow that ensure an enlargement of 4.5 times of particles in the range of RM2.5 particle sizes which is the most hazardous for humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Halonen, T. Lanki, T. Yli-Tuomi, P. Tiittanen, M. Kulmala, and J. Pekkanen, Particulate air pollution and acute cardiorespiratory hospital admissions and mortality among the elderly, Am. J. Epidemiol., 20, No. 1, 143–153 (2009).

    Google Scholar 

  2. A. Pope, Lung Cancer. Cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, JAMA, 287, No. 9, 1132–1141 (2002).

    Article  Google Scholar 

  3. R. Rückerl, R. P. Phipps, A. Schneider, M. Frampton, J. Cyrys, G. Oberdorster, H. E. Wichmann, and A. Peters, Ultrafine particles and platelet activation in patients with coronary heart disease results from a prospective panel study, Part. Fibre Toxicol., 4, No. 1, 1743–8977 (2007).

    Article  Google Scholar 

  4. P. Penttinen, K. Timonen, P. Tiittanen, A. Mirme, J. Ruuskanen, and J. Pekkanen, Ultrafine particles in urban air and respiratory health among adult asthmatics, Eur. Respir. J., 17, No. 3, 428–435 (2001).

    Article  Google Scholar 

  5. R. Rückerl, A. Schneider, S. Breitner, J. Cyrys, and A. Peters, Health effects of particulate air pollution: A review of epidemiological evidence, Inhalation Toxicol., 23, No. 10, 555–592 (2011).

    Article  Google Scholar 

  6. A. Furuyama, S. Kanno, T. Kobayashi, and S. Hirano, Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes, Arch. Toxicol., 83, No. 5, 429–437 (2009).

    Article  Google Scholar 

  7. L. Calderon-Garciduenas, A. Solt, C. Henriquez-Roldan, R. Torres-Jardon, B. Nuse, and L. Herritt, Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the bloodbrain barrier, ultrafine particulate deposition, and accumulation of amyloid β-42 and α-synuclein in children and young adults, Toxicol. Pathol., 36, No. 2, 289–310 (2008).

    Article  Google Scholar 

  8. A. G. Vetoshkin, Processes and Apparatuses of Dust Cleaning: A Manual [in Russian], Izd. Penzensk. Gos. Univ., Penza (2005).

    Google Scholar 

  9. E. A. Pitsukha, Yu. S. Teplitskii, and V. A. Borodulya, Carry-over of particles in a cyclone chamber, J. Eng. Phys. Thermophys., 85, No. 6, 1298−1304 (2012).

    Article  Google Scholar 

  10. E. A. Pitsukha, Yu. S. Teplitskii, and Yu. V. Zhukova, Study of flows in a cyclone chamber, J. Eng. Phys. Thermophys., 84, No. 4, 881−887 (2011).

    Article  Google Scholar 

  11. J. A. Gallego-Juárez, E. Riera-Franco, G. Rodriguez-Corral, T. Hoffmann, J. C. Gálvez-Moraleda, J. R. Rodriguez-Maroto, F. J. Gómez-Moreno, A. Bahillo-Ruiz, M. M. Martin-Espigares, and M. Acha, Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants, Environ. Sci. Technol., 33, No. 21, 3843–3849 (1999).

    Article  Google Scholar 

  12. S. V. Plashikin, Computer simulation of the hydrodynamic processes of cyclone dust collectors, J. Eng. Phys. Thermophys., 89, No. 5, 1093–1102 (2016).

    Article  Google Scholar 

  13. J. A. Gallego-Juárez, High-power ultrasonic processing: recent developments and prospective advances, Phys. Procedia, 3, 35–47 (2010).

    Article  Google Scholar 

  14. V. N. Khmelev, A. V. Shalunov, R. S. Dorovskikh, V. A. Nesterov, S. S. Khmelev, and K. V. Shalunova, Efficiency increase of wet gas cleaning from dispersed admixtures by the application of ultrasonic fields, Arch. Acoust., 41, No. 4, 757−771 (2016).

    Article  Google Scholar 

  15. J. A. Gallego-Juárez and K. F. Graff (Eds.), Power Ultrasonics: Applications of High-Intensity Ultrasound, Woodhead Publishing (2015).

  16. K. Seya, T. Nakane, and T. Otsuro, Agglomeration of aerosols by ultrasonically produced water mist, Ultrasonic Symp. Proc., pp. 583–584 (1957).

  17. E. Riera, A. Cardoni, J. A. Gallego-Juárez, V. M. Acosta, A. Blanco, G. Rodríguez, M. Blasco, and L. E. Herranz, Recent advances in the development and application of power ultrasonic plate transducers in gas dense extraction and particle agglomeration processes, Phys. Procedia, 63, 67–72 (2015).

    Article  Google Scholar 

  18. I. Gonzalez, J. A. Gallego-Juárez, and E. Riera, The influence of entrainment on acoustically induced interactions between aerosol particles — An experimental study, J. Aerosol Sci., 34, 1611−1631 (2003).

    Article  Google Scholar 

  19. J. Liu, J. Wang, G. Zhang, J. Zhou, and K. Cen, Frequency comparative study of coal-fired fly ash acoustic agglomeration, J. Environ. Sci., 23, Issue 11, 1845–1851 (2011).

    Article  Google Scholar 

  20. L. Song, G. Koopman, and T. Hoffmann, An improved theoretical model of acoustic agglomeration, J. Vibr. Acoust., 116, Issue 2, 208−214 (1994).

    Article  Google Scholar 

  21. S. Dong, B. Lipkens, and T. Cameron, The effects of orthokinetic collision, acoustic wake, and gravity on acoustic agglomeration of polydisperse aerosols, J. Aerosol Sci., 37, Issue 4, 540−553 (2006).

    Article  Google Scholar 

  22. E. Riera-Franco de Sarabia and J. Gallego-Juarez, Ultrasonic agglomeration of micron aerosols understanding wave conditions, J. Sound Vibr., 110, Issue 3, 413−427 (1986).

    Article  Google Scholar 

  23. E. A. Pitsukha, Yu. S. Teplitskii, V. A. Borodulya, É. P. Volchkov, N. A. Dvornikov, and V. V. Lukashov, Investigation of the structure of swirling flows in a cyclone chamber under various conditions of gas inlet and outlet, J. Eng. Phys. Thermophys., 85, No. 2, 324−338 (2012).

    Article  Google Scholar 

  24. L. Wang, Theoretical Study of Cyclone Design, Dissertation, Texas A&M University (2004).

  25. K. Bashir, Design and Fabrication of Cyclone Separator, China University of Petroleum (2015), DOI: 1013140/RG.2.2.20727.83368.

  26. A. J. Hoekstra, Gas Flow Field and Collection Efficiency of Cyclone Separators (2000).

  27. K. B. Schnelle, Jr., R. F. Dunn, and M. E. Ternes, Air Pollution Control Technology Handbook, CRC Press (2017).

  28. M. V. Vasilevskii, Dust Control of Gases by Inertial Apparatuses: A Monograph [in Russian], Izd. Tomsk. Politekh. Univ., Tomsk (2008).

    Google Scholar 

  29. V. N. Khmelev, A. V. Shalunov, R. N. Golykh, and V. A. Nesterov, The study of regularities of ultrasonic coagulation of two-phase aerosol in gas flow, EDM'2018: Conf. Proc., Novosibirsk (2018), pp. 327−332.

  30. V. N. Khmelev, A. V. Shalunov, A. N. Galakhov, V. A. Nesterov, R. N. Golykh, and M. V. Khmelev, The control of the ultrasonic coagulation of dispersed nanoscale particles, EDM 2013: Conf. Proc., Novosibirsk (2013), pp. 166−170.

  31. V. N. Khmelev, A. N. Shalunov, V. A. Nesterov, R. S. Dorovskikh, and R. N. Golykh, Ultrasonic radiators for the action on gaseous media at high temperatures, EDM'2015: Conf. Proc., Novosibirsk (2015), pp. 224− 228

  32. V. N. Khmelev, A. V. Shalunov, R. S. Dorovskikh, R. N. Golykh, and V. A. Nesterov, The measurements of acoustic power introduced into gas medium by the ultrasonic apparatuses with the disk-type radiators, EDM'2016: Conf. Proc., Novosibirsk (2016), pp. 251−256.

  33. Tak-Soo Kim, Cyclone Dust-Separating Apparatus, Patent US7422615B2, B01D 45/12. Prior Publication Data 20.07.2006.

  34. S. Titov, A. A. Pavlenko, V. A. Arkhipov, S. S. Bondarchuk, and I. Akhmadeev, Optical methods and algorithms for determination of fine aerosol parameters, Conf. Proc. 1st International Conference on Atmospheric Dust — DUST2014, Italy, June 1–6, 2014, Bari, Italy (2014), pp. 261−265.

  35. O. Kudryashova, A. Pavlenko, B. Vorozhtsov, S. Titov, V. Arkhipov, S. Bondarchuk, E. Maksimenko, I. Akhmadeev, and E. Muravlev, Remote optical diagnostics of nonstationary aerosol media in a wide range of particle sizes, Photodetectors, No. 15, 341–364 (2012).

  36. O. B. Kudryashova, I. R. Akhmadeev, A. A. Pavlenko, V. A. Arkhipov, and S. S. Bondarchuk, A method for laser measurement of disperse composition and concentration of aerosol particles, Key Eng. Mater., 437, 179−183 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Khmelev.

Additional information

Translated from Inzhenerno- Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1385–1396, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khmelev, V.N., Nesterov, V.A. & Shalunov, A.V. Raising the Efficiency of Coagulation of Dispersed Particles by the Action of Ultrasonic Vibrations on Gas-Dispersed Flows in Inertial Dust Collectors. J Eng Phys Thermophy 93, 1335–1346 (2020). https://doi.org/10.1007/s10891-020-02239-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02239-9

Keywords

Navigation