Skip to main content
Log in

Distribution of the Dispersed Phase in a Plane Horizontal Channel in Laminar Motion of a Low-Concentration Suspension

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The author has formulated the problem of gravity stratification and formation of a sediment of a hydrodynamically low-concentration monodisperse suspension of solid particles not involved in Brownian diffusion and moving in a horizontal plane channel during the laminar flow of a Newtonian dispersed phase. A solution to the initial boundary-value problem for first-order partial differential equations has been obtained in analytical form by applying the one-sided integral Laplace transformation with respect to the axial coordinate. Using the principle of superposition of concentration fields of the fractions, the solution has been generalized to the case of a polydisperse suspension with an arbitrary particle-size-distribution density function. An estimate for the accuracy of physical linearization on replacement of the laminar flow of the carrier medium by an ideal-displacement regime has been given. A comparative analysis of computational experiments with classical experimental data for a wide range of the sedimentation Reynolds number has shown the correctness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fortier, Méchanique des Suspensions, Masson et Cie, Paris (1967).

    Google Scholar 

  2. S. K. Das, S. U. Choi, and W. Y. Pradeep, Nanofluids: Science and Technology, Wiley-Interscience, New York (2008).

    Google Scholar 

  3. N. T. Nguyen and S. T. Wereley, Fundamentals and Applications of Microfluids, Artech House, New York (2019).

    Google Scholar 

  4. L. L. Schramm, Emulsions, Foams, Suspensions and Aerosols, Wiley-VCH Verlag GmbH&KGaA, Weinheim (2014).

  5. V. A. Arkhipov and A. S. Usanina, Gravity sedimentation of a set of solid spherical particles in the regime of a partially blown cloud, J. Eng. Phys. Thermophys., 90, No. 5, 1061–1068 (2017).

    Article  Google Scholar 

  6. K. N. Volkov and V. N. Emel’yanov, Concentration distribution of solid particles in the completely developed turbulent flow in a channel, J. Eng. Phys. Thermophys., 91, No. 1, 185–194 (2018).

    Article  Google Scholar 

  7. M. L. Davis, Water and Wastewater Treatment: Design Principles and Practice, McGraw Hill, New York (2010).

    Google Scholar 

  8. P. M. Kulkarni and J. F. Morris, Suspension properties at finite Reynolds number from simulated shear flow, Phys. Fluids, 20, No. 4, Article 040602 (2008).

  9. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics [Russian translation], Izd. Mir, Moscow (1976).

  10. S. M. Peker and S. S. Helvaci, SolidLiquid Two Phase Flow, Elsevier, Amsterdam (2008).

    Google Scholar 

  11. L. D. Landau and E. M. Lifshits, Theoretical Physics. Vol. VI. Hydrodynamics [in Russian], Nauka, Moscow (1986).

  12. G. H. Yeoh and J. Tu, Computational Techniques for Multiphase Flows, Butterworth-Heinemann, New York (2010).

    Google Scholar 

  13. C. T. Crowe, J. D. Schwarzkopf, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles, Taylor & Francis, New York (2012).

    Google Scholar 

  14. I. Lashgari, F. Picano, W.-P. Breugem, and L. Brandt, Laminar, turbulent and inertial shear-thickening regimes in channel flow neutrally buoyant particle suspensions, Phys. Rev. Lett., 113, No. 25, 12–17 (2014).

    Article  Google Scholar 

  15. M. N. Ardekani, L. Asmar, F. Picano, and L. Brandt, Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size particles, Int. J. Heat Fluid Flow, 71, 189–199 (2018).

    Article  Google Scholar 

  16. A. V. Ryazhskikh, A. A. Boger, M. I. Slyusarev, and V. I. Ryazhskikh, Convective-diffusion model of transfer of a sedimenting low-concentration polydisperse suspension of Stokesian particles in a plane channel. Part I, J. Eng. Phys. Thermophys., 89, No. 1, 10–18 (2016).

    Article  Google Scholar 

  17. V. I. Ryazhskikh, Sedimentation of particles in a uniform horizontal liquid flow, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 35, No. 6, 105–107 (1992).

    Google Scholar 

  18. G. A. Korn and T. N. Korn, Handbook of Mathematics for Scientific Workers and Engineers [in Russian], Nauka, Moscow (1974).

    MATH  Google Scholar 

  19. Yu. I. Dytnerskii, Processes and Apparatuses of Chemical Technology. Part 1 [in Russian], Khimiya, Moscow (2002).

    Google Scholar 

  20. R. Byron Berd, Warren E. Stewart, and Edwin N. Lightfoot, Transport Phenomena [Russian translation], Khimiya, Moscow (1974).

    Google Scholar 

  21. I. I. Idel’chik, Handbook of Hydraulic Resistances [in Russian], YOYO Media, Moscow (2012).

    Google Scholar 

  22. G. Doetsh, Guide to the Applications of the Laplace and Z-Transforms [Russian translation], Nauka, Moscow (1971).

    Google Scholar 

  23. Ian N. Sneddon, Fourier Transforms [Russian translation], Inostrannaya Literatura, Moscow (1955).

    Google Scholar 

  24. N. A. Slezkin, Dynamics of a Viscous Incompressible Fluid [in Russian], Gos. Izd. Tekhn.-Teor. Lit., Moscow (1955).

    Google Scholar 

  25. W. E. Schiesser and G. W. Griffiths, A Compendium of Partial Differential Equation Models, Cambridge University Press, Cambridge (2009).

    Book  Google Scholar 

  26. E. Efstathios, Heat and Mass Transfer in Particulate Suspension, Springer, New York (2013).

    Google Scholar 

  27. G. R. Mustafaeva, Sedimentation of solid particles from a suspension flow, Transport Khran. Nefteprod. Uglevod. Syr’ya, No. 1, 33–36 (2017).

  28. L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  29. O. Florea and O. Smigelski, Calculations in Chemical Engineering [Russian translation], Khimiya, Moscow (1971).

    Google Scholar 

  30. M. All-Sammarraee, A. Chan, S. M. Salim, and U. S. Mahabaleswar, Large-eddy simulations of a particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part I: Particle settling performance, Chem. Eng. J., 152, Nos. 2–3, 307–314 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ryazhskikh.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1375–1384, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazhskikh, A.V. Distribution of the Dispersed Phase in a Plane Horizontal Channel in Laminar Motion of a Low-Concentration Suspension. J Eng Phys Thermophy 93, 1324–1334 (2020). https://doi.org/10.1007/s10891-020-02238-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02238-w

Keywords

Navigation