Skip to main content
Log in

Cavitation Effects on the Work of Disperse Sheet Collectors of Frameless Heat Removal Systems in Outer Space

  • HEAT AND MASS TRANSFER IN DISPERSED AND POROUS MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The effects of cavitation processes on the work of the droplet collectors of frameless heat removal systems in outer space have been considered. The low cavitation steadiness of the centrifugal-type collectors has been substantiated. A procedure has been created for the calculation of flow characteristics of a belt-rotor droplet collector. A comparison has been made of the results of numerical calculation with the experimentally obtained characteristics of the functioning of such devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Bondareva, L. M. Glukhov, A. A. Koroteev, V. G. Krasovskii, L. M. Kustov, Yu. A. Nagel’, A. A. Safronov, N. I. Filatov, and E. A. Chernikova, Frameless low-potential-heat removal systems in outer space: development advances and unsolved problems, Izv. Ross. Akad. Nauk, Énergetika, No. 4, 130–142 (2015).

  2. S. A. Shikov, Calculation of the correction function of the scientific equipment "INDIKATOR-MKS," Abstracts of Papers presented at 58th Scientific Conference of the Moscow Physical and Technical Institute. Electronic Collected Papers. URL: http://conf58.mipt.ru/static/reports_pdf/15.pdf, November 23–28, 2015, MFTI, Moscow (2015).

  3. É. V. Vengerskii, V. A. Morozov, and G. L. Usov, Hydrodynamics of Two-Phase Flows in Supply Systems of Power Installations [in Russian], Mashinostroenie, Moscow (1982).

    Google Scholar 

  4. T. Totani, T. Kodama, K. Watanabe, K. Nanbu, H. Nagata, and I. Kudo, Numerical and experimental studies on circulation of working fluid in liquid droplet radiator, Acta Astronautica, 59, Nos. 1–5, 192–199 (2006); DOI:https://doi.org/10.1016/j.actaastro.2006.02.034.

  5. T. Totani, M. Itami, S. Yabuta, H. Nagata, I. Kudo, A. Iwasaki, and S. Hosokawa, Performance test under microgravity on a centrifugal droplet collector for liquid droplet radiator, Trans. Jpn. Soc. Mech. Eng., Ser. B, 68, No. 674, 2780–2787 (2002); DOI:https://doi.org/10.1299/kikaib.68.2780.

  6. https://doi.org/10.1299/jsmehokkaido.2000.40.212.

  7. https://doi.org/10.1299/jsmehokkaido.2001.41.238.

  8. V. G. Konyukhov and G. V. Konyukhov, Thermophysics of Nuclear Power Propulsion Systems [in Russian], “Yanus-K,” Moscow (2009).

  9. A. A. Koroteev, Yu. A. Nagel’, and N. I. Filatov, Experimental testing of droplet cooler radiators under microgravity and high-vacuum conditions, Izv. Ross. Akad. Nauk, Énergetika, No. 5, 81–89 (2015).

  10. S. V. Alekseenko, A. V. Bobylev, V. V. Guzanov, D. M. Markovich, and S. M. Kharlamov, Regular waves on rivulets vertically flowing down at different wetting angles, Teplofiz. Aéromekh., 17, No. 3, 371–384 (2010).

    Google Scholar 

  11. R. A. Dekhtyar’, V. E. Nakoryakov, V. V. Ovchinnikov, and E. Yu. Slesareva, Transient flow regimes in gravity rivulet flow down the lower side of a sloping plate, Izv. Tomsk. Politekh. Univ., Inzh. Geores., 326, No. 8, 102–109 (2015).

    Google Scholar 

  12. S. P. Aktershev, S. V. Alekseenko, A. V. Bobylev, D. M. Markovich, and S. M. Kharlamov, Modeling of waves in a vertical rivulet, Sovr. Nauka: Issled., Idei, Rezul’t., Tekhnol., 14, No. 1, 115–120 (2014).

    Google Scholar 

  13. B. Mohajer and R. Li, Circular hydraulic jump on fi nite surfaces with capillary limit, Phys. Fluids, 27, No. 11, Article 117102 (2015); DOI:https://doi.org/10.1063/1.4935878.

  14. M. Argentina, A. Cohen, Y. Bouret, N. Fraysse, and C. Raufaste, One-dimensional capillary jumps, J. Fluid Mech., No. 765, 1–16 (2015); DOI:https://doi.org/10.1017/jfm.2014.717.

    Article  MathSciNet  Google Scholar 

  15. L. A. Donskoi, V. P. Pylev, B. A. Rabinovich, and V. V. Sergeev, Investigation into the parameters of the rarefied atmosphere around spacecraft in orbital flight, Aviakosm. Pribor., No. 6, 15–29 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Koroteev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 6, pp. 1361–1367, November–December, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koroteev, A.A., Safronov, A.A., Safronova, N.A. et al. Cavitation Effects on the Work of Disperse Sheet Collectors of Frameless Heat Removal Systems in Outer Space. J Eng Phys Thermophy 93, 1311–1316 (2020). https://doi.org/10.1007/s10891-020-02237-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02237-x

Keywords

Navigation