Skip to main content
Log in

Gasdynamic and Acoustic Characteristics of a Subsonic Jet-Edge Rod Generator of Acoustic Radiation

  • HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The design of a subsonic jet-edge rod generator of the Hartmann-type oscillator and a scheme of measuring its acoustic parameters are presented. In this generator, unlike the Hartmann oscillator, not a cylindrical gas jet but an annular gas jet, moving along the thin cylindrical rod positioned at the axis of the generator nozzle, is used. A parametric investigation of the gasdynamic and acoustic processes arising in the tubular cavity of such a generator as a result of the interaction of a subsonic gas jet with this cavity has been performed with consideration for the nonstationary structure of the gas flow in the generator cavity. Recommendations on the choice of the design of a jet-edge rod generator of acoustic radiation with regard for its practical application are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Raman and K. Srinivasan, The powered resonance tube: from Hartmann’s discovery to current active flow control applications, Prog. Aerospace Sci., 45, Nos. 4–5, 97–123 (2009).

  2. E. Brocher, C. Maresca, and M.-H. Bournay, Fluid dynamics of the resonance tube, J. Fluid Mech., 43, 369–384 (1970).

    Article  Google Scholar 

  3. E. Brocher and E. Duport, Resonance tubes in a subsonic flowfield, AIAA J., 26, No. 5, 548–552 (1988).

    Article  Google Scholar 

  4. A. K. Poluboyarinov and A. I. Tsvetkov, Experimental investigations of the longitudinal modes of a Hartmann flow, in: Applied Aerodynamics and Thermal Processes [in Russian], Izd. ITPM Sib. Otd. AN SSSR, Novosibirsk (1980), pp. 99–112.

  5. V. G. Dulov and V. P. Maksimov, Thermal effect of a Hartmann–Sprenger resonator in the regime of high frequncies, Vestn. SPbGU, Ser. 1, Issue 4, 79–86 (2005).

  6. J. Kastner and M. Samimy, Development and characterization of Hartmann tube fluidic actuators for high-speed flow control, AIAA J., 40, No. 10, 1926–1934 (2012).

    Article  Google Scholar 

  7. S. Narayan, B. Bholanath, T. Sundararajan, and K. Srinivasan, Acoustic heating effects in Hartmann whistle, Int. J. Aeroacoust., 121, Nos. 5–6, 557–578 (2013).

  8. R. G. Galiullin and I. P. Revva, Secondary flow in nonlinear vibrations in a half-open resonance tube, Inzh.-Fiz. Zh., 42, No. 4, 687–688 (1982).

    Google Scholar 

  9. G. G. Khalimov, R. G. Galiullin, and V. N. Podymov, Heat transfer during nonlinear oscillations of gas in a half-open tube, J. Eng. Phys. Thermophys., 44, No. 2, 197–204 (1983).

    Google Scholar 

  10. P. A. Thompson, Jet-driven resonance tube, AIAA J., 2, No. 7, 1230–1233 (1964).

    Article  Google Scholar 

  11. V. G. Dulov, V. G. Kuz’mina, and E. A. Ugryumov, Self-oscillation regimes of interaction of a gas jet with obstacles, in: Hydroaeromechanics [in Russian], Izd. St. Petersburg Univ., St. Petersburg (1999), pp. 74–94.

  12. V. M. Kuptsov, S. I. Ostroukhova, and K. N. Filippov, Pressure pulsations and heating of the gas in a cylindrical cavity into which a gas inflows with a supersonic velocity, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, pp. 104–111 (1977).

  13. V. Sarohia and L. H. Back, Experimental investigation of flow and heating in a resonance tube, J. Fluid Mech., 94, 649–672 (1979).

    Article  Google Scholar 

  14. J. Iwamoto and B. E. L. Deckker, A study of the Hartmann–Sprenger tube using the hydraulic analogy, Exp. Fluids, 3, No. 5, 245–252 (1985).

    Article  Google Scholar 

  15. G. B. Sobieraj and A. P. Szumowski, Experimental investigation of an underexpanded jet from a convergent nozzle impinging on a cavity, J. Sound Vibration, 149, No. 3, 375–396 (1991).

    Article  Google Scholar 

  16. B. Henderson, J. Bridges, and M. Wernet, An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets, J. Fluid Mech., 342, 115–117 (2005).

    Article  Google Scholar 

  17. S. Murugappan and E. Gutmark, Parametric study of the Hartmann–Sprenger tube, Exp. Fluids, 38, No. 6, 813–823 (2005).

    Article  Google Scholar 

  18. S. Narayanan, P. Bhave, K. Srinivasan, K. Ramamurthi, and T. Sundararajan, Spectra and directivity of a Hartmann whistle, J. Sound Vibration, 321, No. 3, 875–892 (2009).

    Article  Google Scholar 

  19. B. R. Vinoth, P. Throvagunta, and E. Rathakrishnan, Effect of tube lip thickness on the performance of Hartmann–Sprenger tubes, Proc. Inst. Mech. Eng. Part G: J. Aerospace Eng., 226, No. 1, 74–87 (2011).

    Article  Google Scholar 

  20. K. V. Bobarykin, V. E. Kuz’mina, S. K. Matveev, and V. N. Petrova, Investigation of self-vibrations in impact jets, Vestn. SPbGU, Ser. 1, Issue 1, 59–67 (2009).

  21. O. V. Bocharova and M. G. Lebedev, Self-oscillation regimes of interaction of supersonic overexpanded jets with obstacles, Khim. Fiz., 30, No. 7, 40–47 (2011).

    Google Scholar 

  22. O. V. Bocharova, Simulation of the self-oscillations in a supersonic jet over a Hartmann tube, Mat. Modelir., 25, No. 9, 75–84 (2013).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Volkov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 5, pp. 1220–1232, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, K.N., Emel’yanov, V.N., Efremov, A.V. et al. Gasdynamic and Acoustic Characteristics of a Subsonic Jet-Edge Rod Generator of Acoustic Radiation. J Eng Phys Thermophy 93, 1179–1190 (2020). https://doi.org/10.1007/s10891-020-02220-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02220-6

Keywords

Navigation