Skip to main content
Log in

Experimental Investigation of Heat Transfer of Plane Heat-Removing Surfaces with Plate Finning

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Heat transfer of promising heat-removing surfaces with plate-slit finning intended for use in the case of air cooling of heat loaded radio- and microelectronic facilities in forced convection regime has been investigated experimentally. The influence of the depth of slitting fins and of the turning angle of their slit parts relative to the cooling flow direction on the intensity of heat transfer of the finned surface is shown. It has been established that the greatest intensifying effect is observed at the relative depth of the slitting of fins equal to 0.6, which leads to an increase in the intensity of heat release by 20–25%. The turning of the slit parts of the fins leads to heat transfer growth by 50–60% compared with traditional plate-finned surfaces. Improved dimensionless equations are suggested for calculating average heat transfer of surfaces with plate-slit finning under the conditions of forced convection in the range of the Reynolds number values from 2000 to 10,000. The results of investigation can be used in designing new systems of cooling radio- and microelectronic facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radiators for Cooling Semiconducting Devices. Calculation Methods, OCT4.012.001–1978.

  2. Golnoosh Mostafavi, Natural Convective Heat Transfer from Interrupted Rectangular Fins, Theses Submitted in Partial Fulfillment of the Requirements for the Degree of B. Sci., University of Tehran (2010).

  3. P. Teerstra, M. M. Yovanovich, and J. R. Culham, Analytical forced convection modeling of plate fin heat sinks, J. Electron. Manuf., 10, No. 4, 253–261 (2000).

    Article  Google Scholar 

  4. H. Jonsson and B. Moshfegh, Modeling of the thermal and hydraulic performance of plate fin, strip fin, and pin fin in the case of heat sinks — influence of flow bypass, IEEE Trans. Compon. Pack. Technol., 24, No. 2, 142–149 (2001).

    Article  Google Scholar 

  5. Saad A. El-Sayed, Shamloul M. Mohamed, Ahmed M. Abdel-latif, and Abdel-hamid E. Abouda, Investigation of turbulent heat transfer in longitudinal rectangular-fin arrays of different geometries and shrouded fin array, Exp. Therm. Fluid Sci., 26, 879–900 (2002).

    Article  Google Scholar 

  6. Xiaoling Yu, Jianmei Feng, Quanke Feng, and Qiuwang Wang, Development of a plate–pin fin heat sink and its performance comparisons with a plate fin heat sink, Appl. Therm. Eng., No. 25, 173–182 (2005).

  7. Chien-Hung Chen and Chi-Chuan Wang, A novel trapezoid fin pattern applicable for air-cooled heat sink, Int. J. Heat Mass Transf., 51, No. 11, 1631–1637 (2015).

    Article  Google Scholar 

  8. Sakkarin Chingulpitak, Nares Chimres, Kitti Nilpueng, and Somchai Wongwises, Experimental and numerical investigations of heat transfer and flow characteristics of cross-cut heat sinks, Int. J. Heat Mass Transf., No. 102, 142–153 (2016).

    Article  Google Scholar 

  9. Feng Lili, Du Xiaoze, Yang Yongping, and Yang Lijun, Study on heat transfer enhancement of discontinuous short wave finned flat tube, China Tech. Sci., No. 54, 3281–3288 (2011).

  10. E. N. Pis’mennyi, V. D. Burlei, A. M. Terekh, A. V. Baranyuk, and E. V. Tsvyashchenko, Heat transfer of plane plate surface with slit finning in forced convection, Prom. Teplotekh., 27, No. 4, 11–16 (2005).

    Google Scholar 

  11. A. V. Baranyuk, E. N. Pis’mennyi, A. M. Terekh, V. A. Rogachev, and V. D. Burlei, Aerodynamic resistance of plate surfaces with slit finning in the presence of forced convection, Prom. Teplotekh., 28, No. 4, 29–33 (2006).

    Google Scholar 

  12. A. V. Baranyuk, V. A. Rogachev, A. M. Terekh, and A. I. Rudenko, Numerical simulation of convective heat transfer and aerodynamics of surfaces with plane-slit finning, Vestn. Kharovsk. Politekh. Inst., Ser. Énerg. Teplotekh. Prots. Oborud., No. 9, 64–70 (2017).

  13. A. V. Baranyuk, Yu. E. Nikolaenko, V. A. Rohachev, A. M. Terekh, and P. G. Krukovskiy, Investigation of the flow structure and heat transfer intensity of surfaces with split plate finning, Therm. Sci. Eng. Prog., 11, 28–39 (2019).

    Article  Google Scholar 

  14. A. D. Kraus, Cooling of Electronic Equipment [Russian translation], Énergiya, Leningrad (1971).

    Google Scholar 

  15. D. Kern and A. Kraus, Extended Surface Heat Transfer [Russian translation], Énergiya, Moscow (1977).

    Google Scholar 

  16. Th. E. Schmidt, Verbesserte Methoden zur Bestimmung des Warmeausches an berippte Flachen, Kaltetechnik, Bd. 18, H. 4 (1966).

  17. E. N. Pis’mennyi, A. M. Terekh, A. V. Semenyako, and P. I. Bagrii, Coefficient of efficiency of a rectangular plane-oval pipe, Énerg.: Ékon., Tekhnol., Ékol., No. 2, 70–75 (2010).

  18. E. N. Pis’mennyi, P. I. Bagrii, A. M. Terekh, and A. V. Semenyako, Optimization of the ribbing of a new heat exchange surface of flat-oval tubes, J. Eng. Phys. Thermophys., 86, No. 5, 1066–1071 (2013).

    Article  Google Scholar 

  19. O. N. Kassandrova and V. V. Lebedev, Processing of Observation Results [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  20. A. N. Zaidel’, Errors of Measurements of Physical Quantities [in Russian], Nauka, Leningrad (1974).

    Google Scholar 

  21. V. A. Solov’ev and V. E. Yakhontova, Elementary Methods of Processing Results of Measurements [in Russian], Izd. Leningr. Univ., Leningrad (1977).

    Google Scholar 

  22. R. S. Guter and B. V. Ovchinskii, Elements of Numerical Analysis and of Mathematical Processing of Experimental Results [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  23. Methods of Contact and Noncontact Temperature Measurements, OCT4.10864.000. Reduction 1-79.

  24. E. N. Pis’mennyi, É. Ya. Épik, A. V. Baranyuk, A. M. Terekh, and A. I. Rudenko, Characteristic features of flow on plane slit fins of the cooling elements of radioelectronic equipment, Nauchn. Vesti Kievsk. Politekh. Inst., No. 3, 20–24 (2007).

  25. E. N. Pis’mennyi, É. Ya. Épik, A. V. Baranyuk, A. M. Terekh, and V. D. Burlei, Structure of flow in semiopen channels with slit walls of the cooling elements of radioelectronics equipment, Prom. Teplotekh., 29, No. 4, 45–52 (2007).

    Google Scholar 

  26. E. N. Pis’mennyi, É. Ya. Épik, and A. V. Baranyuk, Structure of flow and heat transfer in channels of heat removal on slitting and their turnings, Nauch. Vesti Kievsk. Politekh. Inst., No. 6, 34–24 (2010).

  27. E. N. Pis’mennyi, V. A. Rogachev, A. M. Terekh, V. D. Burlei, and V. G. Razumovskii, Heat transfer of plane surfaces with net-wire finning in forced convection, Prom. Teplotekh., 24, No. 4, 71–78 (2002).

    Google Scholar 

  28. E. N. Pis’mennyi, V. A. Rogachev, A. M. Terekh, V. D. Burlei, and V. G. Razumovskii, Generalization of experimental data on convective heat transfer of plane surfaces with net-wire finning immersed in longitudinal flow, Énerg.: Ékon., Tekhnol., Ékol., No. 1, 52–58 (2003).

  29. E. N. Pis’mennyi, A. M. Terekh, V. A. Rogachev, V. D. Burlei, and A. I. Rudenko, Calculation of convective heat transfer of plane surfaces with net-wire finning immersed in a cross flow, Prom. Teplotekh., 25, No. 4, 11–15 (2003).

    Google Scholar 

  30. E. N. Pis’mennyi, A. M. Terekh, V. A. Rogachev, and V. D. Burlei, Generalization of experimental data on aerodynamic resistances of surfaces with net-wire finning immersed in a cross flow, Énerg.: Ékon., Tekhnol., Ékol., No. 1, 28–31 (2004).

  31. E. N. Pis’mennyi, V. A. Rogachev, V. D. Burlei, A. F. Vasil’ev, and V. V. Ezhova, Generalization of experimental data on aerodynamic resistance of net-wire finned plane surface immersed in a longitudinal flow, Énerg.: Ékon., Tekhnol., Ékol., No. 1, 97–101 (2006).

  32. E. N. Pis’mennyi, A. M. Terekh, V. A. Rogachev, V. D. Burlei, and A. I. Rudenko, Calculation of convective heat transfer of plane surfaces with wire-net finning immersed in cross-flow, Heat Transf. Res., 36, Nos. 1–2, 39–46 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Zhukova.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 4, pp. 996–1007, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranyuk, A.V., Rogachev, V.A., Zhukova, Y.V. et al. Experimental Investigation of Heat Transfer of Plane Heat-Removing Surfaces with Plate Finning. J Eng Phys Thermophy 93, 962–972 (2020). https://doi.org/10.1007/s10891-020-02196-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02196-3

Keywords

Navigation