Skip to main content
Log in

Spherical Shock Generated by a Moving Piston in a Nonideal Gas under Gravitation Field with Monochromatic Radiation and Magnetic Field

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Similarity solutions for the propagation of a spherical shock wave generated by a moving piston in a nonideal gas under the influence of a gravitational field and azimuthal magnetic field with monochromatic radiation are obtained. The gravitational field is due to a central mass at the origin, i.e., the Roche model is valid. The gravitational effect of the gas itself is neglected in comparison with the attraction of the central mass at the origin. We considered that the radiation flux moves through an electrically conducting nonideal gas with constant intensity and energy is absorbed only behind the shock which moves in the direction opposite to the radiation flux. The results are discussed and compared with ones for a perfect gas, as well as for the cases of the influence of the gravitational field and of the absence of this field. The effect of the variations of the Alfven–Mach number, gravitational parameter, adiabatic exponent, and of the parameter of gas nonidealness are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ro and C. D. Matzner, Shock dynamics in stellar outbursts. I. Shock formation, Astrophys. J., 841, 1–9 (2017).

    Google Scholar 

  2. L. Dessart, E. Livne, and R. Waldman, Shock-heating of stellar envelopes: A possible common mechanism at the origin of explosions and eruptions in massive stars, Mon. Not. R. Astron. Soc., 405, 2113–2131 (2010).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1959).

    Google Scholar 

  4. L. Biermann, Zur Deutung der chromosphärischen Turbulenz und des Exzesses der UV-Strahlung der Sonne, Naturwissenschaften, 33, 118–119 (1946).

    Google Scholar 

  5. L. Biermann, Über die Ursache der chromosphärischen Turbulenz und des UV-Exzesses der Sonnenstrahlung, Z. Astrophys., 25, 161–177 (1948).

    MATH  Google Scholar 

  6. G. Nath and J. P. Vishwakarma, Similarity solution for the fl ow behind a shock wave in a non-ideal gas with heat conduction and radiation heat flux in magnetogasdynamics, Commun. Nonlinear Sci. Numer. Simulat., 19, 1347–1365 (2014).

    MATH  Google Scholar 

  7. E. N. Parker, Interplanetary Dynamical Processes, Interscience, New York (1963).

    MATH  Google Scholar 

  8. M. N. Director and E. K. Dabora, Predictions of variable energy blast waves, AIAA J., 15, 1315–1321 (1977).

    MATH  Google Scholar 

  9. M. H. Rogers, Similarity flows behind strong shock waves, Q. J. Mech. Appl. Math., 11, 411–422 (1958).

    MathSciNet  MATH  Google Scholar 

  10. E. K. Dabora, Variable energy blast waves, AIAA J., 10, 1384–1386 (1972).

    Google Scholar 

  11. J. S. Shang, Recent research in magneto-aerodynamics, Prog. Aerosp. Sci., 21, 1–20 (2001).

    Google Scholar 

  12. R. M. Lock and A. J. Mestel, Annular self-similar solution in ideal gas magnetogasdynamics, J. Fluid Mech., 74, 531–554 (2008).

    Google Scholar 

  13. L. Hartmann, Accretion Processes in Star Formation, Cambridge University Press, Cambridge (1998).

    Google Scholar 

  14. B. Balick and A. Frank, Shapes and shaping of planetary nebulae, Annu. Rev. Astron. Astrophys., 40, 439–486 (2002).

    Google Scholar 

  15. S. I. Anisimov and O. M. Spiner, Motion of an almost ideal gas in the presence of a strong point explosion, J. Appl. Math. Mech., 36, 883–887 (1972).

    Google Scholar 

  16. C. C. Wu and P. H. Roberts, Shock wave propagation in a sonoluminescing gas bubble, Phys. Rev. Lett., 70, 3424–3427 (1993).

    Google Scholar 

  17. P. H. Roberts and C. C. Wu, Structure and stability of a spherical implosion, Phys. Lett. A, 213, 59–64 (1996).

    Google Scholar 

  18. M. P. Ranga Rao and N. K. Purohit, Self-similar piston problem in non-ideal gas, Int. J. Eng. Sci., 14, 91–97 (1976).

    MATH  Google Scholar 

  19. J. P. Vishwakarma and G. Nath, Similarity solutions for the flow behind an exponential shock in a non-ideal gas, Meccanica, 42, 331–339 (2007).

    MathSciNet  MATH  Google Scholar 

  20. G. Nath, Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics, Ain Shams Eng. J., 3, 393–401 (2012).

    Google Scholar 

  21. G. Nath, Self-similar solution of cylindrical shock wave propagation in a rotational axisymmetric mixture of a non-ideal gas and small solid particles, Meccanica, 47, 1797–1814 (2012).

    MathSciNet  MATH  Google Scholar 

  22. G. Nath, Similarity solutions for unsteady flow behind an exponential shock in an axisymmetric rotating non-ideal gas, Meccanica, 50, 1701–1715 (2015).

    MathSciNet  MATH  Google Scholar 

  23. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press, New York (1959).

    MATH  Google Scholar 

  24. R. E. Marshak, Effect of radiation on shock wave behaviour, Phys. Fluids, 1, 24–29 (1958).

    MathSciNet  MATH  Google Scholar 

  25. L. A. Elliott, Similarity methods in radiation hydrodynamics, Proc. Roy. Soc. Lond. A, 258, 287–301 (1960).

    MathSciNet  Google Scholar 

  26. K. C. Wang, Piston problems with thermal radiation, J. Fluid Mech., 20, 447–555 (1964).

    MathSciNet  MATH  Google Scholar 

  27. J. B. Helliwell, Self-similar piston problem with radiative heat transfer, J. Fluid Mech., 37, 497–512 (1969).

    MATH  Google Scholar 

  28. J. R. Nicastro, Similarity analysis of radiative gas dynamics with spherical symmetry, Phys. Fluids, 13, 2000–2006 (1970).

    Google Scholar 

  29. G. Deb-Ray and J. B. Bhowmick, Similarity solutions for expansions in stars, Ind. J. Pure Appl. Math., 7, 96–103 (1976).

    MATH  Google Scholar 

  30. V. M. Khudyakov, The self-similar problem of the motion of a gas under the action of monochromatic radiation, Soviet Phys. Dokl. (Trans. Am. Inst. Phys.), 28, 853–855 (1983).

    MATH  Google Scholar 

  31. A. N. Zheltukhin, A family of exact solutions of the equations of the one-dimensional motion of a gas under the influence of monochromatic radiation, J. Appl. Math. Mech., 52, 262–263 (1988).

    MATH  Google Scholar 

  32. O. Nath and H. S. Takhar, Propagation of cylindrical shock waves under the action of monochromatic radiation, Astrophys. Space Sci., 166, 35–39 (1990).

    Google Scholar 

  33. O. Nath and H. S. Takhar, Spherical MHD shock waves under the action of monochromatic radiation, Astrophys. Space Sci., 202, 355–362 (1993).

    MATH  Google Scholar 

  34. O. Nath, A study of self-similar cylindrical MHD shock waves in monochromatic radiation, Astrophys. Space Sci., 155, 163–167 (1989).

    MATH  Google Scholar 

  35. O. Nath, Propagation of cylindrical shock waves in a rotating atmosphere under the action of monochromatic radiation, Il Nuovo Cimento D, 20, 1845–1852 (1998).

    Google Scholar 

  36. J. P. Vishwakarma and V. K. Pandey, Self-similar flow under the action of monochromatic radiation behind a cylindrical MHD shock in a non-ideal gas, Appl. Math., 2, 28–33 (2012).

    Google Scholar 

  37. P. Carrus, P. Fox, F. Hass, and Z. Kopal, The propagation of shock waves in a stellar model with continuous density distribution, Astrophys. J., 113, 496–518 (1951).

    MathSciNet  Google Scholar 

  38. M. H. Rogers, Analytic solutions for blast wave problem with an atmosphere of varying density, Astrophys. J., 152, 478–493 (1957).

    MathSciNet  Google Scholar 

  39. S. N. Ojha, H. S. Takhar, and O. Nath, Dynamical behaviors of an unstable magnetic star, J. MHD Plasma Res., 8, 1–14 (1998).

    Google Scholar 

  40. J. B. Singh, A self-similar flow in a generalized Roche mode with increasing energy, Astrophys. Space Sci., 88, 269–275 (1988).

    Google Scholar 

  41. J. P. Vishwakarma and G. Nath, Spherical shock wave generated by a moving piston in mixture of a non-ideal gas and small solid particles under a gravitational field, Commun. Nonlinear Sci. Numer. Simulat., 17, 2382–2393 (2012).

    MathSciNet  MATH  Google Scholar 

  42. G. Nath, Self-similar flow behind a spherical shock wave in a non-ideal dusty gas under the gravitational field: Isothermal flow, Adv. Space Res., 52, 1304–1313 ( 2013).

    Google Scholar 

  43. D. Summers, An idealized model of a magnetohydrodynamic spherical blast wave applied to a flare produced shock in the solar wind, Astron. Astophys., 45, 151–158 (1975).

    Google Scholar 

  44. P. Rosenau, Equatorial propagation of axisymmetric magnetohydrodynamic shocks. II, Phys. Fluids, 20, 1097–1103 (1977).

    Google Scholar 

  45. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York (1967).

  46. P. Rosenau and S. Frankenthal, Equatorial propagation of axisymmetric magnetohydrodynamic shocks, Phys. Fluids, 19, 1889–1899 (1976).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nath.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 4, pp. 943–955, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, G. Spherical Shock Generated by a Moving Piston in a Nonideal Gas under Gravitation Field with Monochromatic Radiation and Magnetic Field. J Eng Phys Thermophy 93, 911–923 (2020). https://doi.org/10.1007/s10891-020-02193-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02193-6

Keywords

Navigation