Skip to main content
Log in

Features of High-Velocity Pulsating Liquid Jets

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Processes proceeding in a pulsed liquid-jet generator were investigated in the acoustic and gasdynamic approximations. In the acoustic approximation, the problem on the one-dimensional movement of the liquid in the generator with no movement of its piston and no liquid outflow from it was considered. In the gasdynamic approximation, the problems on one-dimensional and axisymmetric liquid flows in the generator were solved numerically with regard for the movement of the generator piston, the liquid outflow from the generator, and the cavitation of the liquid in it. A one-dimensional liquid flow in the generator was calculated using the potential method, a scheme with introduction of artificial viscosity, the Godunov method, and modifications of this method. Results of calculations of the movement of the liquid in the generator by different models were compared, and corresponding conclusions have been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Atanov, Efficient Method of Numerical Solving Nonstationary Equations of Gas Dynamics [in Russian], DonGU, Donetsk (1988).

    Google Scholar 

  2. V. B. Barakhnin and V. B. Borodkin, TVD scheme of second-order approximation on a moving adaptive mesh for hyperbolic systems, Sib. Zh. Vych. Mat., 3, No. 2, 109–121 (2000).

    MATH  Google Scholar 

  3. O. M. Belotserkovskii, Computational Mechanics, Modern Problems and Results [in Russian], Nauka, Moscow (1991).

    MATH  Google Scholar 

  4. O. M. Belotserkovskii, Numerical Simulation in the Mechanics of Continua [in Russian], Fizmatlit, Moscow (1994).

    Google Scholar 

  5. S. V. Ershov and A. V. Rusanov, Complex of Flow ER® programs for numerical simulation of three-dimensional viscous flows in multistage turbomachines, Proc. III Congr. of Engine Builders of Ukraine "Progress, Quality, Technology," Kharkovsk. Gos. Univ. im. N. E. Zhukovskogo (1998), pp. 109–113.

  6. R. Sauer, Nonstationary Problems of Gas Dynamics [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  7. V. M. Kovenya and N. N. Yanenko, Splitting Method in Problems of Gas Dynamics [in Russian], Nauka, Moscow (1981).

    MATH  Google Scholar 

  8. V. P. Kolgan, Application of the principle of minimum values of a derivative to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics, Uch. Zap. TsAGI, 3, No. 6, 68–77 (1972).

    Google Scholar 

  9. V. I. Kopchenov and A. N. Kraiko, Monotonic difference second-order scheme for hyperbolic systems with two independent variables, Zh. Vych. Mat. Mat. Fiz., 23, No. 4, 848–859 (1983).

    MATH  Google Scholar 

  10. K. M. Magomedov and A. S. Kholodov, Mesh-Characteristic Numerical Methods [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  11. E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flows [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  12. A. A. Prikhod′ko, Computer Technologies in Aerodynamics and Heat Exchange [in Russian], Naukova Dumka, Kiev (2003).

  13. R. Richtmyer and K. Morton, Difference Methods for Solving Boundary Value Problems [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  14. A. V. Rodionov, Monotonic scheme of second-order approximation for pass-through calculation of nonequilibrium flows, Zh. Vych. Mat. Mat. Fiz., 27, No. 4, 585–593 (1987).

    MathSciNet  Google Scholar 

  15. A. V. Rodionov, Upgrading the approximation order of the Godunov scheme, Zh. Vych. Mat. Mat. Fiz., 27, No. 12, 1853–1860 (1987).

    Google Scholar 

  16. A. A. Samarskii and Yu. P. Popov, Difference Schemes of Gas Dynamics [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  17. A. I. Tolstykh, Compact Difference Schemes and Their Use in Problems of Aerodynamics [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  18. M. L. Wilkins, Calculation of elastic-plastic flows, in: Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967).

  19. C. Fletcher, Computational Methods in Fluid Dynamics [in Russian], Vol. 1, Mir, Moscow (1991).

  20. N. E. Hoskin, Method of characteristics for solving equations of unsteady one-dimensional flow, in: Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967), pp. 264–291.

  21. S. K. Godunov, Numerical Solution of Multidimensional Problems of Gas Dynamics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  22. A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, No. 3, 357–393 (1983).

    Article  MathSciNet  Google Scholar 

  23. M. J. Ivings, D. M. Causon, and E. F. Toro, Riemann solvers for compressible water, Proc. ECCOMAS'96 CFD Conf., 9–13 September 1996, Paris, pp. 944–949.

  24. P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357–372 (1981).

    Article  MathSciNet  Google Scholar 

  25. E. F. Toro, Direct Riemann solvers for the time-dependent Euler equation, Shock Waves, 5, 75–80 (1995).

    Article  Google Scholar 

  26. B. Van Leer, Towards the ultimate conservative difference scheme. A second-order sequel to Godunov′s method, J. Comput. Phys., 32, No. 1, 101–136 (1979).

    Article  Google Scholar 

  27. S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335–362 (1979).

    Article  MathSciNet  Google Scholar 

  28. A. N. Semko, High-Pressure Pulsating Liquid Jets [in Russian], Veber, Donetsk (2007).

  29. A. N. Semko, High-Velocity Pulsating Liquid Jets and Their Application [in Russian], DonNU, Donetsk (2014).

    Google Scholar 

  30. W. C. Cooley, Rock breakage by pulsed high pressure water jets, Proc. 1st Int. Symp. Jet Cutting Technology, Coventry, England, Paper B7, 101–112 (1972).

  31. W. C. Cooley and W. N. Lucke, Development and testing of a water cannon for tunneling, Proc. 2nd Int. Symp. Jet Cutting Technology, Cambridge, England, Paper J3, 27–43 (1974).

  32. W. Cooley and L. Clipp, High-pressure water jets for undersea rock excavation, J. Eng. Ind. (ASME), 5, No. 281, 281–287 (1970).

  33. G. A. Atanov, Hydraulic Pulsed Apparatus for Rock Breakage [in Russian], Vysshaya Shkola, Kiev (1987).

  34. Yu. V. Loktiushina and N. Semko, Influence of the working fluid properties on water jet cannon efficiency, Comput. Fluids, 103, No. 1, 166–174 (2014).

    Article  MathSciNet  Google Scholar 

  35. A. N. Semko and V. V. Reshetnyak, Comparison of nozzles having different shapes for a supersonic water gun, Vestn. Donetsk. Nats. Univ., Ser. A, Est. Nauki, No. 2, 61–69 (2009).

  36. V. V. Reshetnyak and A. N. Semko, Influence of different factors on the parameters of a piston water gun, Vestn. Kharkovsk. Politekh. Inst., 24, 120–134 (2010).

    Google Scholar 

  37. V. V. Reshetnyak and A. N. Semko, Influence of the shape of the nozzle of a water gun on its parameters, Prikl. Gidromekh., 12, No. 3, 62–74 (2010).

    Google Scholar 

  38. V. V. Reshetnyak, Optimization of Parameters of a Water Gun, Candidate′s Dissertation (in Engineering), DonNU, Donetsk (2010).

  39. V. V. Reshetnyak, Influence of the shape of the nozzle of a supersonic water gun on its parameters, Proc. Int. Sci-Pract. Workshop "Hydrodynamics and Ecology," November 11–12, 2009, DonNu, Donetsk (2009), pp. 48–53.

  40. É. S. Geskin and O. A. Rusanova, Calculation of the strength characteristics of the nozzle of the barrel of a powder water gun and optimization of its parameters, Probl. Prochnosti, No. 2, 137–146 (2006).

  41. G. A. Atanov and O. P. Petrenko, On the influence of the shape of the nozzle of a powder water gun on its parameters, Prikl. Gidromekh., 9(81), No. 4, 3–9 (2007).

  42. A. N. Semko, O. A. Rusanova, O. V. Kazak, M. V. Beskrovnaya, S. A. Vinogradov, and I. N. Gricina, The use of pulsed high-speed liquid jet for putting out gas blow-out, Int. J. Multiphys., 9, No. 1, 9–20 (2015).

    Article  Google Scholar 

  43. A. N. Semko, S. A. Vinogradov, and I. N. Gritsyna, Use of high-velocity pulsating liquid jets for extinguishing gas flames, Vestn. Donetsk. Univ., Ser. A, Est. Nauki, No. 1, 160–167 (2011).

  44. B. Dunne and B. Cassen, Velocity discontinuity instability of liquid jet, J. Appl. Phys., 27, No. 6, 577–582 (1956).

    Article  Google Scholar 

  45. M. Noumi and K. Yamamoto, Flow characteristics and impact phenomena of pulsed water jets, Proc. Third Pacific Rim Int. Conf. on Water Jet Technology, November 30–December 2, 1992, Taiwan, Tainan, 47–58 (1992).

  46. B. Edney, Experimental studies of pulsed water jets, Proc. 3rd Int. Symp. Jet Cutting Technology, Chicago, Paper B2, 11–26 (1976).

  47. I. M. Daniel et al., Photoelastic study of water jet impact, Proc. 2nd Int. Symp. Jet Cutting Technology, April 2–4, 1974, Cambridge, England, Paper A1, A1–18 (1974).

  48. I. Daniel, Experimental studies of water jet impact on rock and rocklike materials, Proc. 3rd Int. Symp. Jet Cutting Technology, Chicago, Paper B3, 27–46 (1976).

  49. J. E. Field, Stress waves, deformation and fracture caused by liquid impact, Philos. Trans. Roy. Soc. London Ser. A, 260, No. 1110, 86–93 (1996).

    Google Scholar 

  50. J. E. Field and M. B. Lesser, On the mechanics of high speed liquid jets, Philos. Trans. Roy. Soc. London Ser. A, 357, No. 1689, 143–162 (1977).

    Google Scholar 

  51. P. P. Malyushevskii, On the mechanism of formation of cumulative jets in the throwing of a liquid by a plasma accelerator, Mekh. Zhidk. Gaza, No. 5, 39–44 (1988).

  52. M. Vijay, Pulsed jets: fundamentals and applications, Proc. Fifth Pacific Rim Int. Conf. Water Jet Technology, February 3–5, 1998, New Delhi, India, 610–627 (1998).

  53. M. M. Vijay, Properties and parameters of water jets, Proc. Int. Conf. Geomechanics 91, Rotterdam, Balkema, 207–222 (1991).

  54. V. A. Pozdeev, Nonstationary periodic structure of a jet emanating from a jet generator with a pulsed movement of a piston, Mekh. Zhidk. Gaza, No. 4, 172–178 (1996).

  55. G. A. Atanov, Generalization of the method of S. K. Godunov on the calculation of flows with a split, Zh. Vych. Mat. Mat. Fiz., No. 6, 1607–1612 (1978).

  56. G. Birkhoff and E. Zarantonello, Jets, Wakes, and Cavities [Russian translation], Mir, Moscow (1964).

  57. Sh. U. Galiev, Dynamics of Hydroelastoplastic Systems [in Russian], Naukova Dumka, Kiev (1981).

  58. A. N. Semko, Non-stationary cavitation of a liquid in pulse processes, Proc. Int. Summer Sci. School "High Speed Hydrodynamics," June 16–23, 2002, Cheboksary, Washington, 377–381 (2002).

  59. G. Atanov, O. Rusanova, and A. Semko, Unsteady cavitation in the impulse and wave processes, Fifth Int. Symp. Cavitation, November 1–4, 2003, Osaka, Japan, Paper Cav03-OS-7-002 (2003).

  60. O. A. Rusanova and A. N. Semko, Simulation of a nonstationary cavitation, Vestn. Donetsk. Nats. Univ., Ser. A, Est. Nauki, Issue 1, 148–156 (2003).

    Google Scholar 

  61. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasi-Linear Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  62. L. G. Loitsyansky, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  63. G. A. Atanov and L. A. Kunitsyn, Interaction of a shock wave in water with a ledge in a round tube, Teor. Prikl. Mekh., Issue 6, 20–23 (1975).

    Google Scholar 

  64. G. A. Atanov and L. A. Kunitsyn, Interaction of a shock wave in water with a ring diaphragm, Zh. Vych. Mat. Mat. Fiz., No. 4, 1070–1072 (1975).

  65. G. A. Atanov and A. N. Semko, On the relation between the dynamic pressure of an ultrajet and the statistic pressure in an apparatus, in: Aerogasdynamics of Nonstationary Processes [in Russian], TGU, Tomsk (1987), pp. 9–13.

  66. O. A. Marchenko and A. N. Semko, Investigation of a pulsed liquid-jet generator with regard for the cavitation of the liquid in it, Vestn. Donetsk. Nats. Univ., Ser. A, Est. Nauki, No. 1, 162–165 (2002).

  67. O. A. Rusanova and A. N. Semko, On a pulsed liquid-jet generator, Vestn. Dneprovsk. Univ., Ser. Mekh., 8, No. 6(2), 211–218 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kazak.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 4, pp. 926–942, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semko, A.N., Kazak, O.V. Features of High-Velocity Pulsating Liquid Jets. J Eng Phys Thermophy 93, 893–910 (2020). https://doi.org/10.1007/s10891-020-02192-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02192-7

Keywords

Navigation