Skip to main content
Log in

On the Refractive Index of a Gas under High-Thermal-Nonequilibrium Conditions

  • KINETIC THEORY OF TRANSFER PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An analysis has been made of the influence of the excitation of internal degrees of freedom of molecules on the refractive index (n – 1) under the conditions of high thermal nonequilibrium using the problem on relaxation of molecular nitrogen and oxygen behind the front of a strong shock wave as an example. It has been shown that the processes of vibrational relaxation and the processes of electronic translational relaxation and dissociation alike may exert a substantial influence on the refractive index of the gas. The change in the refractive index has been shown to occur primarily because of the change in the gas density in the course of these processes. Also, it has been found that a slight but detectable influence (about 1–2% for n – 1) on the refractive index is exerted by the change in the polarizability of the gas as a result of the change in vibrational temperatures of the mixture’s molecules and due to the excitation of electronic states and the dissociation of the starting components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Osipov and A. A. Filippov, Optical properties of a nonequilibrium vibrationally excited gas, J. Eng. Phys. Thermophys., 56, No. 5, 590−602 (1989).

    Article  Google Scholar 

  2. D. M. Bishop, Molecular vibrational and rotational motion in static and dynamic electric fields, Rev. Mod. Phys., 62, 343−374 (1990).

    Article  Google Scholar 

  3. M. Urban and A. J. Sadlej, Molecular electric properties in electronic excited states: Multipole moments and polarizabilities of H2O in the lowest 1B1 and 3B1 excited states, Theor. Chim. Acta, 78, 189−201 (1990).

    Article  Google Scholar 

  4. A. I. Osipov and A. V. Uvarov, Kinetic and gasdynamic processes in nonequilibrium molecular physics, Sov. Phys. Usp., 35, 903−923 (1992).

    Article  Google Scholar 

  5. R. J. Cvetanovic, Excited state chemistry in the stratosphere, Can. J. Chem., 52, 1452−1464 (1974).

    Article  Google Scholar 

  6. A. M. Starik, B. I. Lukhovitskii, and N. S. Titova, Mechanism of the initiation of combustion in CH4(C2H2)/air/O3 mixtures by laser excitation of O3 molecules, Kinet. Catal., 48, 348−366 (2007).

    Article  Google Scholar 

  7. A, Fridman, Plasma Chemistry, Cambridge University Press, Cambridge, UK (2008).

    Book  Google Scholar 

  8. V. N. Azyazov, Excited states in the active media of oxygen-iodine lasers, Quantum Electron., 39, Issue 11, 989−1007 (2009).

    Article  Google Scholar 

  9. B. I. Loukhovitski and A. M. Starik, Modeling of vibration-electronic-chemistry coupling in the atomic-molecular oxygen system, Chem. Phys., 360, Nos. 1−3, 18−26 (2009).

  10. V. A. Krasnopolsky, Atmospheric chemistry on Venus, Earth, and Mars: Main features and comparison, Planet. Space Sci., 59, Issue 10, 952−964 (2011).

    Article  Google Scholar 

  11. S. A. Ishanov and V. V. Medvedev, Mathematical modeling of metastable components in the ionosphere of the Earth, J. Eng. Phys. Thermophys., 78, No. 6, 1071−1079 (2005).

    Article  Google Scholar 

  12. G. Colonna, G. D’Ammando, L. D. Pietanza, and M. Capitelli, Excited-state kinetics and radiation transport in lowtemperature plasmas, Plasma Phys. Controlled Fusion, 57, 014009 (2015).

    Google Scholar 

  13. B. I. Loukhovitski, A. S. Sharipov, and A. M. Starik, Influence of vibrations and rotations of diatomic molecules on their physical properties: I. Dipole moment and static dipole polarizability, J. Phys. B: At. Mol. Opt. Phys., 49, No. 12, 125102 (2016).

    Article  Google Scholar 

  14. A. S. Sharipov, B. I. Loukhovitski, and A. M. Starik, Influence of vibrations of polyatomic molecules on dipole moment and static dipole polarizability: Theoretical study, J. Phys. B: At. Mol. Opt. Phys., 50, No. 16, 165101 (2017).

    Google Scholar 

  15. M. Medved, Š. Budzák, and T. Pluta, Electric properties of the low-lying excited states of benzonitrile: Geometry relaxation and solvent effects, Theor. Chem. Acc., 134, 78 (2015).

    Article  Google Scholar 

  16. A. I. Kharitonov, K. S. Khoroshko, and V. P. Shkadova, Temperature dependence of air refraction at high temperature, Fluid Dyn., 9, 851−853 (1974).

    Article  Google Scholar 

  17. C. Yun-yun, L. Zhen-hua, S. Yang, and H. An-zhi, Extension of the Gladstone–Dale equation for flame flow field diagnosis by optical computerized tomography, Appl. Opt., 48, Issue 13, 2485–2490 (2009).

    Article  Google Scholar 

  18. P. P. Khramtsov, O. G. Penyazkov, M. Yu. Chernik, V. M. Grishchenko, I. N. Shatan, and I. A. Shikh, Shadow method for measuring the electron density in a barrier discharge plasma on the Zhukovskii airfoil surface, J. Eng. Phys. Thermophys., 84, No. 6, 1341−1347 (2011).

    Article  Google Scholar 

  19. M. Wang, A. Mani, and S. Gordeyev, Physics and computation of aero-optics, Annu. Rev. Fluid Mech., 44, No. 1, 299−321 (2012).

    Article  MathSciNet  Google Scholar 

  20. V. V. Kuzmitskiy, O. G. Penyazkov, and O. V. Buganov, Visualization of nonequilibrium gas flows by schlieren technique with a double-pulse femtosecond laser a source of optical radiation, in: S. M. Frolov and A. I. Lanshin (Eds.), Nonequilibrium Processes. Vol. 1. Kinetics and Plasma, TORUS PRESS, Moscow (2019), pp. 162–171.

    Google Scholar 

  21. A. A. Tropina, Y. Wu, C. M. Limbach, and R. B. Miles, Influence of vibrational non-equilibrium on the polarizability and refraction index in air: Computational study, J. Phys. D: Appl. Phys., 53, No. 10, 105201 (2019).

    Article  Google Scholar 

  22. P. P. Khramtsov, V. A. Vasetskii, V. M. Grishchenko, M. V. Doroshko, M. Y. Chernik, A. I. Makhnach, and I. A. Shikh, Diagnostics of density fields in hypersonic flows around a cone in a light-gas gun by the shadow photometric method, Tech. Phys., 64, 1424−1429 (2019).

    Article  Google Scholar 

  23. Y. Takahashi, K. Yamada, and T. Abe, Prediction performance of blackout and plasma attenuation in atmospheric reentry demonstrator mission, J. Spacecraft Rockets, 51, No. 6, 1954−1964 (2014).

    Article  Google Scholar 

  24. A. S. Sharipov, B. I. Loukhovitski, and A. M. Starik, Influence of vibrations and rotations of diatomic molecules on their physical properties: II. Refractive index, diffusion coefficients, reactivity, J. Phys. B: At. Mol. Opt. Phys., 49, No. 12, 125103 (2016).

    Google Scholar 

  25. R. A. Alpher and D. R. White, Optical refractivity of high temperature gases. I. Effects resulting from dissociation of diatomic gases, Phys. Fluids, 2, Issue 2, 153 (1959).

    Article  Google Scholar 

  26. R. A. Alpher and D. R. White, Optical refractivity of high temperature gases. II. Effects resulting from ionization of monatomic gases, Phys. Fluids, 2, Issue 2, 162 (1959).

    Article  Google Scholar 

  27. S. M. Gladkov and N. I. Koroteev, Quasiresonant nonlinear optical processes involving excited and ionized atoms, Sov. Phys. Usp., 33, No. 7, 554−575 (1990).

    Article  Google Scholar 

  28. G. A. Askaryan, Self-focusing of light beam in course of excitation of atoms and molecules of medium in the beam, JETP Lett., 4, 400−403 (1966).

    Google Scholar 

  29. W. H. Flygare, Molecular Structure and Dynamics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1978).

  30. I. N. Kadochnikov and I. V. Arsentiev, Kinetics of nonequilibrium processes in air plasma formed behind shock waves: State-to-state consideration, J. Phys. D: Appl. Phys., 51, 374001 (2018).

    Article  Google Scholar 

  31. I. N. Kadochnikov, B. I. Loukhovitski, and A. M. Starik, A modified model of mode approximation for nitrogen plasma based on the state-to-state approach, Plasma Sources Sci. Technol., 24, 055008 (2015).

    Article  Google Scholar 

  32. A. S. Sharipov, B. I. Loukhovitski, A. V. Pelevkin, V. D. Kobtsev, and D. N. Kozlov, Polarizability of electronically excited molecular oxygen: Theory and experiment, J. Phys. B: At. Mol. Opt. Phys., 52, 045101 (2019).

    Article  Google Scholar 

  33. T. M. Miller, Atomic and molecular polarizabilities. Vol. 10. CRC Handbook of Chemistry and Physics, D. R. Lide and W. M. Haynes (Eds.), 90th edn., CRC Press, Boca Raton, Florida (2010), pp. 193−202.

    Google Scholar 

  34. K. Andersson and A. J. Sadlej, Electric dipole polarizabilities of atomic valence states, Phys. Rev. A, 46, 2356−2362 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Arsent’ev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 4, pp. 882–889, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukhovitskii, B.I., Sharipov, A.S., Arsent’ev, I.V. et al. On the Refractive Index of a Gas under High-Thermal-Nonequilibrium Conditions. J Eng Phys Thermophy 93, 850–857 (2020). https://doi.org/10.1007/s10891-020-02187-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02187-4

Keywords

Navigation