Skip to main content
Log in

Excluded Volume in Microrheological Models of Structured Suspensions

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An exact solution of rheology equations, which is possible for a layered two-phase material simplest of structure, is used as a tool for testing concepts and rheological equations obtained on the basis of the existing structural models of disperse systems and for ranking the models by the extent to which the excluded-volume effect is taken account of in them. Consideration has been given to the features of flow of layered systems in which the dispersed phase is a continuous impermeable medium, an elastic material, and a coagulation structure permeable to a dispersion medium. In the context of the model of flow of layered systems, the authors interpret the flow regime observed experimentally, the so-called “stress plateau,” which is characteristic of liquid crystalline structures and polymer melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Reiner, Rheology, Springer-Verlag, Berlin–Güttingen–Heidelberg (1958).

    Google Scholar 

  2. V. N. Matveenko and E. A. Kirsanov, Non-Newtonian Flow of Disperse, Polymer, and Liquid Crystalline Systems. Structural Approach [in Russian], Tekhnosfera, Moscow (2016).

    Google Scholar 

  3. T. F. Tadros, Rheology of Dispersions: Principles and Applications, Wiley-VCH Verlag & Co., Weinheim, Germany (2010).

    Book  Google Scholar 

  4. H. L. Frisch and R. Simha, Viscosity of colloidal dispersions and solutions containing macromolecules, in: F. R. Eirich (Ed.), Rheology: Theory and Applications, Vol. 1, Academic Press, New York (1956).

    Google Scholar 

  5. J. V. Robinson, The viscosity of suspensions of spheres, J. Phys. Chem., 53, No. 7, 1042–1056 (1949).

    Article  Google Scholar 

  6. V. Vand, Viscosity of solutions and suspensions. I. Theory, J. Phys. Chem., 52, No. 2, 277–299 (1948).

    Article  Google Scholar 

  7. H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, No. 4, 571 (1952).

    Article  Google Scholar 

  8. M. Mooney, The viscosity of a concentrated suspension of spherical particles, J. Colloid Sci., 6, No. 2, 162–170 (1951).

    Article  Google Scholar 

  9. E. E. Bibik and E. A. Popova, Fractal model of a coagulating suspension, Zh. Prikl. Khim., 73, Issue 1, 19–23 (2000).

    Google Scholar 

  10. E. E. Bibik, Kinetics of structuring and separation of phases of a disperse system in a gravity field, Zh. Prikl. Khim., 70, Issue 8, 1258–1262 (1997).

    Google Scholar 

  11. E. E. Bibik, Fractal aggregates, rheological and magnetic properties of magnetic liquids, Sixth Int. Conf. on Magnetic Fluids, July 20–24, 1992, Paris (1992), Programme and Abstracts, P3/48, pp. 392–393.

  12. E. E. Bibik, N. S. Gamov, and N. M. Gribanov, Fractal aggregates and rheological properties of ferromagnetic fluids, V All-Union Conf. on the Physics of Magnetic Fluids, September 18–20, 1990, Abstracts of Papers, Perm (1990), pp. 28–30.

    Google Scholar 

  13. E. E. Bibik and V. E. Skobochkin, Friction torque in a rotating field and the magnetorheological effect in colloidal ferromagnetics, J. Eng. Phys. Thermophys., 22, No. 4, 474–478 (1972).

    Article  Google Scholar 

  14. E. E. Bibik, Physics, chemistry, and technology of disperse systems (colloidal chemistry), in: New Reference Book of a Chemist and a Technologist. Volume: Electrode Processes. Chemical Kinetics and Diffusion. Colloidal Chemistry [in Russian], ANONPO “Professional,” St. Petersburg (2004), pp. 547–830.

  15. M. Youssry, L. Coppola, I. Nicotera, and C. Morán, Swollen and collapsed lyotropic lamellar rheology, J. Colloid Interface Sci., 321, 459–467 (2008).

    Article  Google Scholar 

  16. K. Mortensen, Structural studies of lamellar surfactant systems under shear, Curr. Opin. Colloid Interface Sci., 6, 140–145 (2001).

    Article  Google Scholar 

  17. W. Richtering, Rheology and shear induced structures in surfactant solutions, Curr. Opin. Colloid Interface Sci., 6, 446–450 (2001).

    Article  Google Scholar 

  18. L. Porcar, G. G. Warr, W. A. Hamilton, and P. D. Butler, Shear-induced collapse in a lyotropic lamellar phase, Phys. Rev. Lett., 95, 078302 (2005).

    Article  Google Scholar 

  19. S. Fujii, S. Komura, and C.-Y. D. Lu, Structural rheology of the smectic phase, Materials, 7, 5146–5168 (2014).

    Article  Google Scholar 

  20. J. Zipfel, P. Lindner, M. Tsianou, P. Alexandridis, and W. Richtering, Shear-induced formation of multilamellar vesicles (“Onions”) in block copolymers, Langmuir, 15, No. 8, 2599–2602 (1999).

    Article  Google Scholar 

  21. P. Versluis, J. C. van de Pas, and J. Mellema, Microstructure and rheology of lamellar liquid crystalline phases, Langmuir, 13, 5732–5738 (1997).

    Article  Google Scholar 

  22. J. Zhao, Z. N. Wang, X. L. Wei, F. Liu, W. Zhou, X. L. Tang, and T. H. Wu, Phase behavior and rheological properties of the lamellar liquid crystals formed in dodecyl polyoxyethylene-polyoxypropylene ether/water system, Indian J. Chem., 50A, 641–649 (2011).

    Google Scholar 

  23. O. Henrich, K. Stratford, D. Marenduzzo, P. V. Coveney, and M. E. Cates, Rheology of lamellar liquid crystals in two and three dimensions: A simulation study, Soft Matter, 8, 3817–3831 (2012).

    Article  Google Scholar 

  24. M. G. Berni, C. J. Lawrence, and D. Machin, A review of the rheology of the lamellar phase in surfactant systems, Adv. Colloid Interface Sci., 98, 217–243 (2002).

    Article  Google Scholar 

  25. J. P. Rothstein, Strong flows of viscoelastic wormlike micelle solutions, Rheology Rev., 1–46 (2008).

  26. E. Cappelaere, J. F. Berret, J. P. Decruppe, R. Cressely, and P. Lindner, Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: Evidence of a shear-induced phase transition, Phys. Rev. E, 56, No. 2, 1869–1878 (1997).

    Article  Google Scholar 

  27. V. N. Matveenko and E. A. Kirsanov, Viscosity and structure of disperse systems, Vestn. Moskovsk. Univ., Ser. 2. Khimiya, 52, No. 4, 243–276 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Bibik.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 4, pp. 870–881, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibik, E.E., Sivtsov, E.V. & Rodinova, V.D. Excluded Volume in Microrheological Models of Structured Suspensions. J Eng Phys Thermophy 93, 839–849 (2020). https://doi.org/10.1007/s10891-020-02186-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02186-5

Keywords

Navigation