Skip to main content
Log in

Study of the Moisture Sorption Isotherms and Isosteric Heat of Sorption of the Medicinal Plant Launeae Nudicaulis from Algerian Sahara

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The aim of this work is to determine the sorption isotherms of Launeae nudicaulis, a medicinal plant growing in south-west of Algeria. The equilibrium moisture content was measured, using the static gravimetric method, with the water activity from 6.3 to 89.8% at 30 and 40°C. It was shown that at higher water activities the moisture content increases sharply with the temperature, resulting in crossing of the isotherm curves. Four models were applied for analyzing experimental data (namely, the Peleg, GAB, Henderson–Thompson, and the BET modified ones). The desorption and adsorption data showed the best correlation with the Peleg model. The isosteric sorption heat of water was determined from the equilibrium data at different temperatures. This heat was shown to decrease as the moisture content increases and to be a polynomial function of the moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Brunauer, The Adsorption of Gases and Vapors, Princenton University Press, Princenton, New York (1945).

    Google Scholar 

  2. M. Daguenet, Les Séchoirs Solaires: Théorie et Pratique, Publication de lUNESCO, Paris (1985).

  3. D. W. Sun and J. L. Woods, The selection of sorption isotherm equations for wheat based on the fitting of available data, J. Stored Products Res., 30, 27–47 (1994).

    Article  Google Scholar 

  4. D. W. Sun and J. L. Woods, Simulation of the heat and moisture transfer process during drying in deep grain beds, Drying Technol., 15, 2479–2508 (1997).

    Article  Google Scholar 

  5. D. W. Sun and J. L. Woods, Deep bed simulation of the cooling of stored grain with ambient air: A test bed for ventilation control strategies, J. Stored Products Res., 33, 229–312 (1998).

    Google Scholar 

  6. X. D. Chen, A new sorption equilibrium isotherm model, Food Res. Int. J., 30, 755–759 (1997).

    Article  Google Scholar 

  7. N. Arslanand and H. Togrul, Moisture sorption isotherms for crushed chillies, Biosyst. Eng., 90, 47–61 (2005).

    Article  Google Scholar 

  8. M. L. Medeiros, A. I. Bartolomeu Ayrosa, R. N. M. Pitombo, and S. C. Da Silva Lannes, Sorption isotherms of cocoa and cupuassu products, J. Food Eng., 73, 402–406 (2006).

    Article  Google Scholar 

  9. S. R. Baquar, Medicinal and Poisonous Plants of Pakistan, Printas Press, Karachi (1989).

    Google Scholar 

  10. A. Cheriti, N. Belboukhari, and S. J. Hacini, Ethnopharmacological survey and phytochemical screening of some medicinal Asteraceae from Algerian Sahara, PhytoChem. BioSub. J., 7, No. 2 (2013).

  11. S. Rashid, M. Ashraf, S. Bibi, and R. Anjum, Antibacterial and antifungal activites of Launaea nudicaulis (Roxb.) and Launaea resedifolia (Linn.), Pak. J. Bio. Sci., 3, 630–632 (2000).

    Article  Google Scholar 

  12. F. Mansoor and I. Anis, Chemical studies of Launaea nudicaulis Hook.f. extracts with antioxidant and urease inhibitory activities, J. Chem. Soc. Pak., 35, 233–237 (2013).

    Google Scholar 

  13. S. Rashid, M. Ashraf, S. Bibi, and R. Anjum, Insecticidal and cytotoxic activities of Launaea nudicaulis (Roxb.) and Launaea Resedifolia (Linn.), Pak. J. Biol. Sci., 3, 808–809 (2000).

    Article  Google Scholar 

  14. D. Ali, S. M. S. Hussain, A. Malik, and Z. J. Ahmed, Chemical constituents of the Genus Launaea, Chem. Soc. Pak., 25, 341–347 (2003).

    Google Scholar 

  15. M. Saleem, S. Parveen, N. Riaz, M. N. Tahir, M. Ashraf, I. Afzal, M. S. Ali, A. Malikand, and A. Jabbar, New bioactive natural products from Launaea nudicaulis, Phytochem. Lett., 5, 793–799 (2012).

    Article  Google Scholar 

  16. C. Van den Berg and S. Bruin, Water activity and its estimation in food systems: Theoretical aspects, in: L. B. Rockland and G. F. Stewart (Eds.), Water Activity: Influences on Food Quality, Academic Press, New York (1981), pp. 1–61.

    Google Scholar 

  17. Moisture Relationship of Pant-Based Agricultural Products, ASAE Standard D245.5, American Society of Agricultural and Biological Engineers, St. Joseph, Michigan (1995).

  18. D. Ricardo, P. Andrade, M. Roberto Lemus, E. Carmen, and C. Pérez, Models of sorption isotherms for food: Uses and limitations, Vitae: Revista de la Facultad de Química Farmacéutica, 18, 325–334 (2011).

    Google Scholar 

  19. H. Bizot, N. Riou, and J.-L. Multon, Guide pratique pour la détermination des isothermes et de lactivité de leau, Sci. Aliments, numéro hors-série (1987).

  20. M. Kouhila, A. Belghit, and M. Daguenet, Approche expérimentale des isothermes de sorption de la menthe en vue dun séchage par énergie solaire, Rev. Energ. Renouv., 2, 61–68 (1999).

    Google Scholar 

  21. G. Yu, L. Mazza, and D. S. Jayas, Moisture sorption of characteristics of freeze-dried, osmo-dried and osmo-air dried cherries, Trans. ASAE, 42, 141–147 (1999).

    Article  Google Scholar 

  22. S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 309–319 (1938).

    Article  Google Scholar 

  23. M. Kouhila, N. Kechaou, M. Otmani, M. Fliyou, and S. Lahsasni, Experimental study of sorption isotherms and drying kinetics of Moroccan Eucalyptus globulus, Drying Technol., 20, 2027–2039 (2002).

    Article  Google Scholar 

  24. S. Aregba, Effect of temperature on the moisture sorption isotherm of a biscuit containing processed mango (Mangifera indica) kernel flour, J. Food Eng., 48, 121–125 (2002).

    Article  Google Scholar 

  25. M. A. Basunia and T. Abe, Moisture desorption isotherms of medium-grain rough rice, J. Stored Products Res., 37, 205–219 (2001).

    Article  Google Scholar 

  26. A. Belghit, M. Kouhila, and B. C. Boutaleb, Experimental study of drying kinetics by forced convection of aromatic plants, Energy Convers. Manage., 44, 1303–1321 (2000).

    Article  Google Scholar 

  27. N. Ouafi , H. Moghrani, N. Benaouada, N. Yassaa, R. Maachi, and R. Younsi, Moisture sorption isotherms and heat of sorption of Algerian bay leaves, Maderas: Ciencia Tecnol., 17, 759–772 (2015).

    Google Scholar 

  28. S. Lahsasni, M. Kouhila, M. Mahrouz, and N. Kechaou, Experimental study and modelling of adsorption and desorption isotherms of prickly pear peel (Opuntia ficus indica), J. Food Eng., 55, 201–207 (2002).

    Article  Google Scholar 

  29. N. Moshsenin, Physical Properties of Plant and Animal Materials, Gordon and Breach Science Publishers, New York (1986).

    Google Scholar 

  30. S. S. H. Rizvi, Thermodynamics properties of foods in dehydration, in: M. A. Rao, S. S. H. Rizvi, and A. K. Datta (Eds.), Engineering Properties of Food, 3rd edn., CRC Press, New York (2005), pp. 239–326.

    Google Scholar 

  31. R. J. Aguerre, C. Suarez, and P. E. Viollaz, The temperature dependence of isosteric heat of sorption of some cereal grains, Int. J. Food Sci. Technol., 23, 141–145 (1988).

    Article  Google Scholar 

  32. C. Chen, Obtaining the isosteric sorption heat directly by sorption isotherm equations, J. Food Eng., 74, 178–185 (2006).

    Article  Google Scholar 

  33. C. Perez-Alonso, C. I. Beristain, C. Lobato-Calleros, M. E. Rodriguez-Huezo, and E. J. Vernon-Carter, Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers, J. Food Eng., 77, 753–760 (2006).

    Article  Google Scholar 

  34. M. Vullioud, C. A. Marquez, and A. De Michelis, Equilibrium sorption isotherms and isosteric heat of rose hip fruits (Rosa eglanteria), Int. J. Food Properties, 9, 823–833 (2006).

    Article  Google Scholar 

  35. S. Samapundo, F. Devlieghere, B. De Meulenaer, A. Atukwase, Y. Lamboni, and J. M. Debevere, Sorption isotherms and isosteric heats of sorption of whole yellow dent corn, J. Food Eng., 79, 168–175 (2007).

    Article  Google Scholar 

  36. N. Bahloul, N. Boudhrioua, and N. Kechaou, Moisture desorption–adsorption isotherms and isosteric heats of sorption of Tunisian olive leaves (Olea europaea 294 L.), Ind. Crops Prod., 28, 162–176 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 4, pp. 846–856, July–August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedol, A., Cheriti, A. & Ouahrani, M.R. Study of the Moisture Sorption Isotherms and Isosteric Heat of Sorption of the Medicinal Plant Launeae Nudicaulis from Algerian Sahara. J Eng Phys Thermophy 93, 816–826 (2020). https://doi.org/10.1007/s10891-020-02184-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02184-7

Keywords

Navigation