Skip to main content
Log in

Heat Conduction of Ceramic Materials Based on MgAl2O4 and ZnAl2O4

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Optically transparent samples of ceramic materials based on the magnesium aluminate and zinc aluminate spinels of density close to the theoretically attainable one have been obtained, and their heat conductivity was measured in the temperature range 50–300 K. It is shown that the heat conductivities of these ceramic materials at room temperature are close and fall within the range 17–18 W/(m·K). At a cryogenic temperature (T = 50 K), the heat conductivity of the ceramic materials based on the zinc aluminate spinel (180 W/(m·K)) is much higher than the heat conductivity of the ceramic materials based on the magnesium aluminate spinel (122 W/(m·K)). The absolute heat conductivities of the ceramic materials based on the indicated spinels are dependent on the sintering additives used in their production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Goldstein, Y. Yeshurin, M. Vulfson, and H. Kravits, Fabrication of transparent polycrystalline ZnAl2O4 –– A new optical bulk ceramic, J. Am. Ceram. Soc., 95, No. 3, 879–882 (2012).

    Google Scholar 

  2. P. Loiko, A. Belyaev, O. Dymshits, I. I. Yevdokimov, V. Vitkin, K. Volkoba, M. Tsenter, A. Volokitina, M. A. Baranov, E. Vilejshikova, A. V. Baranov, and A. Zhilin, Synthesis, characterization and absorption saturation of Co:ZnAl2O4 (gahnite) transparent ceramic and glass-ceramics: A comparative study, J. Alloys Compd., 725, 998–1005 (2017).

    Article  Google Scholar 

  3. D. C. Harris and G. Turri, Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 μm wavelengths and comparison with sapphire, Opt. Eng., 52, No. 8, 87113 (2013).

  4. A. Goldstein and A. Krell, Transparent ceramics at 50: Progress made and further prospects, J. Am. Ceram. Soc., 99, No. 10, 3173–3197 (2016).

    Article  Google Scholar 

  5. S. S. Balabanov, R. P. Yavetskiy, A. Belyaev, E. M. Gavrishchuk, V. V. Drobotenko, I. I. Yevdokimov, A. Novikova, O. V. Palashov, D. Permin, and V. G. Pomenov, Fabrication of transparent MgAl2O4 ceramics by hot-pressing of solgel-derived nanopowders, Ceram. Int., 41, No. 10, 13366–13371 (2015).

    Article  Google Scholar 

  6. M. K. Alekseev, G. I. Kulikova, M. Yu. Rusin, N. N. Savanina, S. S. Balabanov, A. V. Belyaev, E. M. Gavrishchuk, A. V. Ivanov, and R. N. Rizakhanov, Transparent ceramics prepared from ultrapure magnesium aluminate spinel nanopowders by spark plasma sintering, Inorg. Mater., 52, No. 3, 324–330 (2016).

    Article  Google Scholar 

  7. S. V. Egorov, A. A. Sorokin, I. E. Ilyakov, B. V. Shishkin, E. A. Serov, V. V. Parshin, K. I. Rybakov, S. S. Balabanov, and A. V. Belyaev, Terahertz dielectric properties of polycrystalline MgAl2O4 spinel obtained by microwave sintering and hot pressing, J. Infrared, Millimeter, Terahertz Waves, 40, No. 4, 447–455 (2019).

    Article  Google Scholar 

  8. S. V. Egorov, Y. V. Bykov, A. G. Eremeev, A. A. Sorokin, E. A. Serov, V. V. Parshin, S. S. Balabanov, A. V. Belyaev, A. V. Novikova, and D. A. Permin, Millimeter-wavelength radiation used to sinter radiotransparent MgAl2O4 ceramics, Radiophys. Quantum Electron., 59, Nos. 8–9, 690–697 (2017).

  9. S. V. Egorov, A. A. Sorokin, I. E. Ilyakov, B. V. Shishkin, V. V. Parshin, S. S. Balabanov, and A. V. Belyaev, Low loss MgAl2O4 ceramics for terahertz windows, EPJ Web Conf., 187, 01004 (2018).

  10. S. Burghartz and B. Schulz, Thermophysical properties of sapphire, AlN and MgAl2O4 down to 70 K, J. Nucl. Mater., 212215, 1065–1068 (1994).

  11. I. Kuznetsov, I. Mikhin, D. Silin, and O. Palashov, Thermal conductivity measurements using phase-shifting interferometry, Opt. Mater. Express., 4, No. 10, 2204 (2014).

  12. R. L. Gentilman, Current and emerging materials for 3–5 micron IR transmission, Proc. SPIE, 0683, 2–11 (1986).

    Article  Google Scholar 

  13. D. W. Roy and G. G. Martin, Advances in spinel optical quality, size/shape capacity, and applications, Proc. SPIE, 1760, 2–13 (1992).

    Article  Google Scholar 

  14. N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin, and G. de With, Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4), J. Eur. Ceram. Soc., 24, No. 8, 2417–2424 (2004).

    Article  Google Scholar 

  15. S. S. Balabanov, V. E. Vaganov, E. M. Gavrishchuk, V. V. Drobotenko, D. A. Permin, and A. V. Fedin, Effect of magnesium aluminum isopropoxide hydrolysis conditions on the properties of magnesium aluminate spinel powders, Inorg. Mater., 50, No. 8, 830–836 (2014).

    Article  Google Scholar 

  16. A. A. Sorokin, S. V. Egorov, Y. V. Bykov, A. G. Eremeev, V. V. Kholoptsev, K. I. Rybakov, S. S. Balabanov, and A. V. Belyaev, Microstructure of the microwave fast-sintered MgAl2O4 ceramics, EPJ Web Conf., 149, 02021 (2017).

  17. A. V. Belyaev, M. I. Lelet, N. I. Kirillova, N. M. Khamaletdinova, M. S. Boldin, A. A. Murashov, and S. S. Balabanov, Sol-gel synthesis and characterization of ZnAl2O4 powders for transparent ceramics, Ceram. Int., 45, No. 4, 4835–4839 (2019).

    Article  Google Scholar 

  18. A. V. Belyaev, I. I. Evdokimov, V. V. Drobotenko, and A. A. Sorokin, A new approach to producing transparent ZnAl2O4 ceramics, J. Eur. Ceram. Soc., 37, No. 7, 2747–2751 (2017).

    Article  Google Scholar 

  19. V. V. Drobotenko, S. S. Balabanov, and T. I. Storozheva, Effect of ligand environment on the physicochemical properties of aluminum alkoxide mixtures, Inorg. Mater., 46, No. 3, 295–298 (2010).

    Article  Google Scholar 

  20. P. A. Popov, A. A. Sidorov, E. A. Kul′chenko, A. M. Anishchenko, I. C. Avetissov, N. I. Sorokin, and P. P. Fedorov, Thermal conductivity and expansion of PbF2 single crystals, Ionics, 23, No. 1, 233–239 (2017).

  21. B. M. Mogilevskii, V. F. Tumnurova, A. F. Chudnovskii, E. D. Kaplan, L. M. Puchkina, and V. M. Reiterov, Thermal conductivity of fluorides of alkali earth metals, J. Eng. Phys., 30, No. 2, 210–214 (1976).

    Article  Google Scholar 

  22. B. M. Mogilevskii, V. M. Reiterov, V. F. Tumnurova, L. M. Trofimova, and A. F. Chudnovskii, Thermal conductivity of fluorite containing trivalent metal impurities, J. Eng. Phys., 28, No. 3, 318–320 (1975).

  23. B. M. Mogilevskii, V. F. Tumpurova, and A. F. Chudnovskii, Thermal conductivity and structural characteristics of CaF2 crystals doped with NaF and YF3, J. Eng. Phys., 27, No. 2, 982–987 (1974).

    Article  Google Scholar 

  24. B. M. Mogilevskii, V. F. Tumpurova, and A. F. Chudnovskii, Structural characteristics of alkaline earth fluorides and their thermal conductivity: SrF2 with YF3 and LuF3 impurities, J. Eng. Phys., 27, No. 3, 1114–1116 (1974).

    Article  Google Scholar 

  25. J. Francl and W. D. Kingery, Thermal conductivity: IX, Experimental investigation of effect of porosity on thermal conductivity, J. Am. Ceram. Soc., 37, No. 2, 99–107 (1954).

    Article  Google Scholar 

  26. S. Klemme and M. Ahrens, Low-temperature heat capacities of MgAl2O4 and spinels of the MgCr2O4–MgAl2O4 solid solution, Phys. Chem. Miner., 34, No. 2, 59–72 (2007).

    Article  Google Scholar 

  27. V. Askarpour, M. H. Manghnani, S. Fassbender, and A. Yoneda, Elasticity of single-crystal MgAl2O4 spinel up to 1273 K by Brillouin spectroscopy, Phys. Chem. Miner., 19, No. 8, 511–519 (1993).

    Article  Google Scholar 

  28. A. K. Kushwaha, Vibrational, elastic properties ad sound velcoties of zinc aluminate spinel, Comput. Mater. Sci., 69, 505–509 (2013).

    Article  Google Scholar 

  29. N. Tristan, V. Zestrea, G. Behr, R. Klingeler, B. Büchner, H. A. Krug von Nidda, A. Loidl, and V. Tsurkan, Spin frustration and magnetic exchange in cobalt aluminum oxide spinels, Phys. Rev. B, 77, No. 9, 094412 (2008).

  30. N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin, and G. de With, Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4), J. Eur. Ceram. Soc., 24, No. 8, 2417–2424 (2004).

    Article  Google Scholar 

  31. B. Roy, A. Pandey, Q. Zhang, T. W. Heitmann, D. Vaknin, D. C. Johnston, and Y. Furukawa, Experimental evidence of a collinear antiferromagnetic ordering in the frustrated CoAl2O4 spinel, Phys. Rev. B, 88, No. 17, 174415 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Balabanov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 3, pp. 742–747, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanov, S.S., Belyaev, A.V. & Popov, P.A. Heat Conduction of Ceramic Materials Based on MgAl2O4 and ZnAl2O4. J Eng Phys Thermophy 93, 719–724 (2020). https://doi.org/10.1007/s10891-020-02171-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02171-y

Keywords

Navigation