Skip to main content
Log in

Optimization of the Passive Regime of Artificial Freezing of a Water-Saturated Rock Mass

  • HEAT TRANSFER IN PHASE TRANSFORMATIONS
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An iteration computational algorithm is presented for optimization of the passive regime of artificial freezing of a water-saturated rock mass, which is the longest and most cost-intensive stage in the process of shaft excavation and carriage installation. The optimization is implemented by solving the inverse problem of determination of the heat flux on the boundary of a freezing well in a horizontal rock layer. Heat transfer in the rock layer is considered with account taken of the phase transition of the first kind on the basis of the Stefan problem in a two-dimensional formulation. The developed algorithm is based on the principle of descriptive regularization and the optimization method of steepest descent. In the algorithm, the target functional gradient and the parameters of optimization of the problem′s solution are determined from the solution of a conjugate problem for temperature increment. Using the proposed algorithm, optimum regimes of passive freezing for rock layers with different thermal and physical characteristics under varied initial conditions have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. Trupak, Freezing of Grounds in Underground Development [in Russian], Nedra, Moscow (1974).

    Google Scholar 

  2. N. S. Ivanov, Heat and Mass Transfer in Frozen Rocks [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  3. G. Gioda, L. Locatelli, and F. Gallavresi, A numerical and experimental study of the artifi cial freezing of sand, Can. Geotech. J., 31, No. 1, 1–11 (1994).

    Article  Google Scholar 

  4. X. Tan, W. Chen, H. Tian, and J. Cao, Water flow and heat transport including ice/water phase change in porous media: numerical simulation and application, Cold Regions Sci. Technol., 68, Nos. 1–2, 74–84 (2011).

  5. P. N. Vabishchevich, M. V. Vasilyeva, and N. V. Pavlova, Numerical simulation of thermal stabilization of fi lter soils, Math. Models Comput. Simul., 7, No. 2, 154–164 (2015).

    Article  MathSciNet  Google Scholar 

  6. I. Panteleev, A. Kostina, M. Zhelnin, A. Plekhov, and L. Levin, Intellectual monitoring of artificial ground freezing in the fluid-saturated rock mass, Procedia Struct. Integrity, 5, 492–499 (2017).

    Article  Google Scholar 

  7. M. S. Zhelnin, O. A. Plekhov, M. A. Semin, and L. Yu. Levin, Numerical solution for an inverse problem about determination of volumetric heat capacity of rock mass during artificial freezing, PNRPU Mech. Bull., No. 4, 56–75 (2017).

    Google Scholar 

  8. L. Y. Levin, M. A. Semin, and A. V. Zaitsev, Solution of an inverse Stefan Problem in analyzing the freezing of groundwater in a rock mass, J. Eng. Phys. Thermophys., 91, No. 3, 611–618 (2018).

    Article  Google Scholar 

  9. E. Pimentel, S. Papakonstantinou, and G. Anagnostou, Numerical interpretation of temperature distributions from three ground freezing applications in urban tunneling, Tunnel. Undergr. Space Technol., 28, No. 1, 57–69 (2012).

    Article  Google Scholar 

  10. G. V. Anikin and K. A. Spasennikova, Computer simulation of a system for cooling the ground under an oil tank, Kriosfera Zemli, 16, No. 2, 60–64 (2012).

    Google Scholar 

  11. Ya. B. Gorelik, A. B. Shabarov, and Yu. S. Sysoev, Dynamics of thawing of frozen rocks in the zone of infl uence of two wells, Kriosfera Zemli, 12, No. 1, 59–65 (2008).

  12. A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], Librokom, Moscow (2009).

    Google Scholar 

  13. V. R. Voller, C. R. Swaminathan, and B. G. Thomas, Fixed grid techniques for phase change problems: A review, Int. J. Numer. Methods Eng., 30, No. 4, 875–898 (1990).

    Article  MATH  Google Scholar 

  14. V. R. Voller, Enthalpy method for inverse Stefan problems, Numer. Heat Transf. Part B: Fundamentals, 21, No. 1, 41–55 (1992).

    Article  Google Scholar 

  15. A. Khosravifard, M. R. Hematiyan, and L. C. Wrobel, Simultaneous control of solidus and liquidus lines in alloy solidification, Eng. Anal. Bound. Elem, 37, No. 2, 211–224 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Z. Yang and N. Zabaras, The adjoint method for an inverse design problem in the directional solidifi cation of binary alloys, J. Comput. Phys., 140, No. 2, 432–452 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Hetmaniok, J. Hristov, D. Słota, and A. Zielonka, Identifi cation of the heat transfer coeffi cient in the two-dimensional model of binary alloy solidifi cation, Heat Mass Transf., 53, No. 5, 1657–1666 (2017).

    Article  Google Scholar 

  18. R. Tavakoli, Thermal optimization of the continuous casting process using distributed parameter identification approach — controlling the curvature of solid–liquid interface, Int. J. Adv. Manuf. Technol., 94, Nos. 1–4, 1101–1118 (2018).

  19. S. A. Nekrasov and V. S. Volkov, Optimum control in the Stefan problem and methods of its computation, Vesti St. Petersburgsk. Univ., Ser. 10. Prikl. Mat. Inform. Protsessy Upravl., No. 2, 87–100 (2016).

  20. A. F. Albu, V. I. Gorbunov, and V. I. Zubov, Optimal control of the process of melting, Comput. Math. Math. Phys., 40, No. 4, 491–504 (2000).

    MathSciNet  MATH  Google Scholar 

  21. A. F. Albu and V. I. Zubov, Investigation of the optimal control problem for metal solidifi cation in a new formulation, Comput. Math. Math. Phys., 54, No. 5, 756–766 (2014).

    Article  Google Scholar 

  22. N. L. Goldman, Inverse Stefan Problem, Kluwer Academic Publisher, Dordrecht (1997).

    Book  Google Scholar 

  23. O. M. Alifanov, Inverse Heat Transfer Problems, Springer-Verlag, Berlin (1994).

    Book  MATH  Google Scholar 

  24. H. Kano, H. Nakata, and C. F. Martin, Optimal curve fitting and smoothing using normalized uniform B-splines: A tool for studying complex systems, Appl. Math. Comput., 169, No. 1, 96–128 (2005).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Levin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 3, pp. 706–714, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelnin, M.S., Plekhov, O.A. & Levin, L.Y. Optimization of the Passive Regime of Artificial Freezing of a Water-Saturated Rock Mass. J Eng Phys Thermophy 93, 685–692 (2020). https://doi.org/10.1007/s10891-020-02167-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02167-8

Keywords

Navigation