Skip to main content
Log in

Assessing the Size Distribution of Droplets Obtained in a Centrifugal Mass-Exchange Apparatus

  • HEAT AND MASS TRANSFER IN DISPERSED AND POROUS MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Consideration has been given to the basic mechanisms of fragmentation of droplets in the system “liquid–liquid” in film flow over the working surface of the rotor of a centrifugal mass-exchange apparatus. The authors have assessed theoretically the sizes of dispersed-phase droplets on separation of the liquid film from the rotor’s working surface and its arrival at a toroidal clearance between the intake tube and the rotor of the apparatus. It has been established that the greatest influence on the formation of the particle-size distribution of an emulsion is exerted by shear stresses in the liquid that arise in the toroidal clearance. The influence of the rotor speed and the rate of flow of the liquid on the size distribution of droplets of the obtained emulsion has been shown. Good agreement between theoretical and experimental data has been confirmed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Piterkin, R. Sh. Prosvirnin, and E. A. Petrov, Technology of Nitrate Esters and Nitrate-Containing Industrial Explosives: A Monograph [in Russian], Izd. Altaiskogo Gos. Tekh. Univ., Biisk (2012).

  2. K. D. Vachagin, N. Kh. Zinnatulin, and N. V. Tyabin, Film flow of a non-Newtonian liquid over rotating surfaces, J. Eng. Phys. Thermophys., 9, No. 2, 130−136 (1965).

    Article  Google Scholar 

  3. H. Esping and R. Hoyle, Waves in a thin liquid layer on a rotating disk, J. Fluid Mech., 22, No. 4, 671−677 (1965).

    Article  Google Scholar 

  4. A. F. Charwat, R. E. Kelly, and C. Gazley, The flow and stability of thin liquid films on a rotating disk, J. Fluid Mech., 53, No. 2, 227−255 (1972).

  5. G. M. Sisoev, A. F. Tal’drik, and V. Ya. Shkadov, Flow of a viscous liquid film on the surface of a rotating disk, J. Eng. Phys. Thermophys., 51, No. 4, 1171−1174 (1986).

  6. G. M. Sisoev and V. Ya. Shkadov, Helical waves in liquid film on a rotating disk, J. Eng. Phys. Thermophys., 58, No. 4, 423−426 (1990).

  7. G. M. Sisoev and V. Ya. Shkadov, Flow stability of a film of a viscous liquid on the surface of a rotating disk, J. Eng. Phys. Thermophys., 52, No. 6, 671−674 (1987).

  8. G. M. Sisoev, O. K. Matar, and C. J. Lawrence, Axisymmetric wave regimes in viscous liquid film flow over spinning disk, J. Fluid Mech., 495, 385−411 (2003).

    Article  MathSciNet  Google Scholar 

  9. O. K. Matar, G. M. Sisoev, and C. J. Lawrence, Evolution scales for wave regimes in liquid film flow over a spinning disk, Phys. Fluids, 16, No. 5, 1532−1545 (2004).

    Article  MathSciNet  Google Scholar 

  10. V. Ya. Shkadov, On the theory of nonlinear waves in a liquid film on a rotating disk, Vestn. MGU, Mat. Mekh., No. 1, 59−65 (2005).

  11. G. M. Sisoev and V. Ya. Shkadov, Two-layer film flow over the surface of a rotating disk, J. Eng. Phys. Thermophys., 55, No. 3, 999−1003 (1988).

  12. D. S. Blinov, V. A. Gordon, A. Yu. Oreshkin, et al., Two-layer flow of a viscous fluid over the interior surface of a rotating cone nozzle, Khim. Khim. Tekhnol., 49, No. 6, 62−65 (2006).

    Google Scholar 

  13. J. O. Hince and H. J. Milborn, Atomization of liquid by means of a rotating cup, J. Appl. Mech., 17, 145−153 (1950).

    Google Scholar 

  14. V. G. Levich, Physicochemical Hydrodynamics [in Russian], Gos. Izd. Fiz.-Mat. Lit., Moscow (1959).

  15. N. Dombrovski and W. R. Johns, The aerodynamic instability and disintegration of viscous liquid sheets, Chem. Eng. Sci., 18, 203−214 (1963).

    Article  Google Scholar 

  16. C. J. Clark and N. Dombrowski, The aerodynamic instability and disintegration of inviscid liquid sheets, Proc. R. Soc. Lond. A, 329A, 467−478 (1972).

    MATH  Google Scholar 

  17. A. N. Kolmogorov, Local structure of turbulence in an incompressible liquid at very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, No. 4, 299−303 (1941).

    Google Scholar 

  18. A. N. Kolmogorov, Energy dissipation in the case of locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 32, No. 1, 19−21 (1941).

    Google Scholar 

  19. A. M. Obukhov, On the energy distribution in the spectrum of a turbulent flow, Izv. Akad. Nauk SSSR, Ser. Geografiya Geofiz., 32, No. 1, 22−24 (1941).

  20. A. N. Kolmogorov, On the fragmentation of droplets in a turbulent flow, Dokl. Akad. Nauk SSSR, 66, No. 5, 825−828 (1949).

    Google Scholar 

  21. I. O. Protod’yakonov and S. V. Ul’yanov, Hydrodynamics and Mass Transfer in Disperse Liquid–Liquid Systems [in Russian], Nauka, Leningrad (1986).

  22. L. N. Braginskii, V. M. Barabash, and V. I. Begachev, Mixing in Liquid Media. Physical Principles and Calculation Methods [in Russian], Khimiya, Leningrad (1984).

  23. A. A. Schmidt and P. G. Ganin, Probability of fragmentation and stability of droplets in the core of a turbulent liquid flow under the conditions of homogeneous and isotropic turbulence and in a stirred apparatus, Sorbts. Khromat. Protsessy, 8, No. 6, 921−930 (2008).

    Google Scholar 

  24. N. S. Shulaev, E. A. Nikolaev, and S. P. Ivanov, Small-Volume Disk Mixers [in Russian], Khimiya, Moscow (2009).

  25. M. S. Vasilishin, A. A. Kukhlenko, O. S. Ivanov, et al., Installation with a centrifugal mass-exchange apparatus for enhancing technological processes in a liquid–liquid system, Khim. Neftegaz. Mashinostroenie, No. 12, 11−14 (2018).

  26. A. A. Kukhlenko, S. E. Orlov, and M. S. Vasilishin, Calculating the parameters of flow of a liquid film over the surface of a centrifugal mass-exchange apparatus, Polzunovskii Vestnik, No. 4, 145−150 (2017).

  27. A. A. Kukhlenko, S. E. Orlov, and M. S. Vasilishin, Influence of the physicochemical properties of a liquid on the regularities of film flow in the rotor of a centrifugal mass-exchange apparatus, Yuzhno-Sibirsk. Nauchn. Vestnik, No. 4, 147−152 (2018).

  28. E. A. Mogilevskii and V. Ya. Shkadov, Flows of thin films of a viscous fluid over curvilinear rotating surfaces, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 18−32 (2009).

  29. J. X. Liu, Q. B. Yu, and Q. Qin, Numerical study on film disintegration by centrifugal atomization using rotating cup, Powder Metallurgy, 56, No. 4, 288−294 (2013).

  30. H. Deng and H. Ouyang, Vibration of spinning disks and powder formation in centrifugal atomization, Proc. R. Soc. A, 467A, 361−380 (2011).

    Article  Google Scholar 

  31. J. Boussinesq, Theorie de l’Ecoulement Tourbillant, Mem. Presentes par Divers Savants Acad. Sci. Inst. Fr., 23, 46–50 (1877).

    Google Scholar 

  32. V. A. Rabinovich and Z. Ya. Khavin, Short Reference Book of Chemistry [in Russian], Khimiya, Leningrad (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kukhlenko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 3, pp. 674–684, May–June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukhlenko, A.A., Vasilishin, M.S., Orlov, S.E. et al. Assessing the Size Distribution of Droplets Obtained in a Centrifugal Mass-Exchange Apparatus. J Eng Phys Thermophy 93, 653–663 (2020). https://doi.org/10.1007/s10891-020-02164-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02164-x

Keywords

Navigation