Skip to main content
Log in

Calculation of the Thermodynamic Equilibrium of a Multicomponent Two-Phase System Based on Minimization of the Gibbs Potential

  • GENERAL PROBLEMS OF TRANSPORT THEORY
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The authors have proposed a method to model the thermodynamic equilibrium of the two-phase multicomponent system “solution–vapor” by solving a system of ordinary differential equations following from the principles of nonequilibrium thermodynamics and statistical physics. Calculation of the thermodynamics of liquid and vapor phases was based on the equation of state. During the solution of the system of ordinary differential equations, the authors determined the molar volumes of the solution and the vapor, the molar composition of the phases, and the pressures of the onset of boiling of the solution and condensation of the vapor. The proposed method is fundamentally different from the popular empirical Rachford–Rice method. Results of calculating with this method have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Glebov and G. A. Kliger, Molecular-mass distribution of Fischer–Tropsch synthesis products, Usp. Khim., 2, No. 1, 192–202 (1994).

    Google Scholar 

  2. I. V. Derevich, V. S. Ermolaev, N. V. Zol’nikova, and V. Z. Mordkovich, Thermodynamics of formation of solid paraffins in Fischer–Tropsch synthesis products, Teor. Osn. Khim. Tekhnol., 47, No. 3, 243–252 (2013).

  3. H. H. Rachford and J. D. Rice, Procedure for use of electronic digital computers in calculating flash vaporization hydrocarbon equilibrium, J. Pet. Technol., 4, No. 1, 19–23 (1952).

    Article  Google Scholar 

  4. M. L. Michelsen, The isothermal flash problem. Part I. Stability, Fluid Phase Equilib., 9, No. 1, 1–19 (1982).

  5. M. L. Michelsen, The isothermal flash problem. Part II. Phase-split calculation, Fluid Phase Equilib., 9, No. 2, 21–40 (1982).

  6. D. V. Nichita and C. F. Leibovici, Improved solution windows for the resolution of the Rachford–Rice equation, Fluid Phase Equilib., 452, No. 25, 69–73 (2017).

    Article  Google Scholar 

  7. R. Juanes, A robust negative flash based on a parameterization of the tie-line field, Fluid Phase Equilib., 267, No. 1, 6–17 (2008).

    Article  MathSciNet  Google Scholar 

  8. D. V. Nichita and S. Gomez, Efficient and reliable mixture critical points calculation by global optimization, Fluid Phase Equilib., 291, No. 2, 125–140 (2010).

    Article  Google Scholar 

  9. H. A. Zhang, Review on global optimization methods for phase equilibrium modeling and calculations, Open Thermodyn. J., 5, No. 1, 71–92 (2011).

    Article  MathSciNet  Google Scholar 

  10. Y. S. Wei and R. J. Sadus, Equations of state for the calculation of fluid-phase equilibria, Exp. Thermodyn., 46, No. 1, 169–196 (2000).

    Google Scholar 

  11. D.-Y. Peng and D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, No. 1, 59–64 (1976).

    Article  Google Scholar 

  12. F. L. Román, A. Mulero, and F. Cuadros, Simple modifications of the van der Waals and Dieterici equations of state: vapor–liquid equilibrium properties, Phys. Chem. Chem. Phys., 6, No. 23, 5402–5409 (2004).

    Article  Google Scholar 

  13. J. S. Lopez-Echeverry, S. Reif-Acherman, and E. Araujo-Lopez, Peng–Robinson equation of state: 40 years through cubics, Fluid Phase Equilib., 447, 39–71 (2017).

    Article  Google Scholar 

  14. A. Anderko, Cubic and generalized Van der Waals equations, Exp. Thermodyn., 5, 75–126 (2000).

    Google Scholar 

  15. S. B. Kiselev and D. G. Friend, Cubic crossover equation of state for mixtures, Fluid Phase Equilib., 162, Nos. 1–2, 51–82 (1999).

  16. B. I. Lee and M. G. Kesler, A generalized thermodynamic correlation based on three-parameter corresponding states, AIChE J., 21, No. 3, 510–527 (1975).

    Article  Google Scholar 

  17. N. F. Carnahan and K. E. Starling, Equation of state for nonattracting spheres, J. Chem. Phys., 51, 635–636 (1969).

    Article  Google Scholar 

  18. M. Khanpour and G. A. Parsafar, A simple method of generating equations of state for hard sphere fluid, Chem. Phys., 333, Nos. 2–3, 208–213 (2007).

  19. A. A. Migdal, Equation of state near a critical point, Sov. Phys. JETP, 35, No. 4, 816–822 (1972).

    Google Scholar 

  20. Dong NguyenHuynh, A modified group-contribution PC-SAFT equation of state for prediction of phase equilibria, Fluid Phase Equilib., 430, 33–46 (2016).

  21. R. T. Jacobsen, S. G. Penoncello, and E. W. Lemmon, Equations of state for fluids and fluid mixtures, Exp. Thermodyn., 5, 849–881 (2000).

    Google Scholar 

  22. L. Sun, S. B. Kiselev, and J. F. Ely, Multiparameter crossover equation of state: Generalized algorithm and application to carbon dioxide, Fluid Phase Equilib., 233, No. 2, 204–219 (2005).

    Article  Google Scholar 

  23. P. P. Bezverkhii, V. G. Martynets, and É. V. Matizen, Nonparametric scale equation of state for fluids with account of symmetry, Zh. Éksp. Teor. Fiz., 136, No. 2 (8), 311–317 (2009).

  24. M. L. Michelsen, A simple method for calculation of approximate phase boundaries, Fluid Phase Equilib., 98, 1–11 (1994).

    Article  Google Scholar 

  25. T. K. S. Ritschel and J. B. Jørgensen, Computation of Phase Equilibrium and Phase Envelopes, DTU Compute-Technical Report-2017, Technical University of Denmark (2017).

  26. H. Sun, A. Raghavan, K. Haugen, and S. Chempath, An improved isenthalpic flash algorithm based on maximization of entropy, Fluid Phase Equilib., 438, 18–28 (2017).

    Article  Google Scholar 

  27. G. Venkatarathnam, Density marching method for calculating phase envelopes. 2. Three-phase envelopes, Ind. Eng. Chem. Res., 53, No. 9, 3723–3730 (2014).

    Article  Google Scholar 

  28. M. Castier, Solution of the isochoric-isoenergetic flash problem by direct entropy maximization, Fluid Phase Equilib., 276, No 1, 7–17 (2009).

    Article  Google Scholar 

  29. A. Firoozabadi and H. Pan, Fast and robust algorithm for compositional modeling: Part I. Stability analysis testing, SPE J., 7, No. 1, 78–89 (2002).

    Article  Google Scholar 

  30. D. V. Nichita, New unconstrained minimization methods for robust flash calculations at temperature, volume and moles specifications, Fluid Phase Equilib., 466, 31–47 (2018).

    Article  Google Scholar 

  31. L. D. Landau and E. M. Lifshits, Theoretical Physics. Part 1. Statistical Physics [in Russian], Nauka, Moscow (1976).

  32. I. Gyarmati, Non-Equilibrium Thermodynamics [Russian translation], Mir, Moscow (1974).

  33. S. M. Walas, Phase Equilibria in Chemical Engineering. Part 1 [Russian translation], Mir, Moscow (1989).

  34. S. M. Walas, Phase Equilibria in Chemical Engineering. Part 2 [Russian translation], Mir, Moscow (1989).

  35. V. B. Kogan and V. V. Fridman, Equilibrium Between a Liquid and a Vapor [in Russian], Book 2, Nauka, Moscow–Leningrad (1966).

  36. V. I. Klyatskin, Dynamics of Stochastic Systems [in Russian], Fizmatlit, Moscow (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Derevich.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 2, pp. 259–273, March–April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derevich, I.V., Panova, A.A. Calculation of the Thermodynamic Equilibrium of a Multicomponent Two-Phase System Based on Minimization of the Gibbs Potential. J Eng Phys Thermophy 93, 247–260 (2020). https://doi.org/10.1007/s10891-020-02115-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02115-6

Keywords

Navigation