Skip to main content
Log in

Comments on the Selection of a Dispersed Sample to Determine the Magnetic Susceptibility of the Sample and the Dispersed Phase Particles

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An analysis has been made of field experimental dependences of the magnetic susceptibility of low-concentration colloids with different values of concentration of the dispersed phase of particles (magnetite). An attempt has been made to generalize them to a single dependence in coordinates in which the ordinate is the concentration-rated susceptibility and thus to determine the magnetic susceptibility of individual particles. It has been shown that the obtained results significantly exceed maximum permissible ones. Furthermore, there is contradiction in them (in using data for one and the same colloid, but with a different concentration of the dispersed phase). This is due to the formation of chains and aggregates of particles. Thus, to determine the magnetic susceptibility of dispersed phase particles, it is necessary to use "hard" dispersed samples, in particular, two-fraction powder samples (with addition of a passive fraction), which ensures the fixation of the dispersed phase particles. Examples have been given of concentration dependences of the magnetic susceptibility of powder samples (with a dispersed phase of magnetite particles), and also of ferro-impurity particles of sugar sand and farina. These dependences having characteristic linear portions make it possible to obtain data on the magnetic susceptibility of individual ferroparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Sandulyak, D. A. Sandulyak, M. N. Polismakova, A. V. Sandulyak, D. O. Kiselev, and V. A. Ershova, Analysis of concentration dependences of magnetic susceptibilities of disperse magnetite-containing media, J. Eng. Phys. Thermophys., 90, No. 4, 845–850 (2017).

    Article  Google Scholar 

  2. A. A. Sandulyak, M. N. Polismakova, D. O. Kiselev, D. A. Sandulyak, and A. V. Sandulyak, On limitation of the volume fraction of particles of a dispersed sample (with control of their magnetic properties), Tonkie Khim. Tekhnol., 12, No. 3, 58–64 (2017).

    Google Scholar 

  3. D. A. Sandulyak, A. A. Sandulyak, D. O. Kiselev, A. V. Sandulyak, M. N. Polismakova, M. A. Kononov, and V. A. Ershova, Determining the magnetic susceptibility of ferroparticles from the data on susceptibility of their dispersed samples, Izmer. Tekh., No. 9, 48–52 (2017).

    Google Scholar 

  4. A. A. Sandulyak, A. V. Sandulyak, V. A. Ershova, N. Pamme, B. Ngmasom, and A. Iles, Defi nition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defi ning single particle susceptibility, J. Magn. Magn. Mater., 441, 724–734 (2017).

  5. A. Chevalier, J.-L. Mattei, and M. Le Floc'h, Ferromagnetic resonance of isotropic heterogeneous magnetic materials: theory and experiments, J. Magn. Magn. Mater., 215–216, 66–68 (2000).

    Article  Google Scholar 

  6. G. Q. Lin, Z. W. Li, L. Chen, Y. P. Wu, and C. K. Ong, Infl uence of demagnetizing field on the permeability of soft magnetic composites, J. Magn. Magn. Mater., 305, 291–295 (2006).

    Article  Google Scholar 

  7. J.-L. Mattei and M. Le Floc'h, Effects of the magnetic dilution on the ferromagnetic resonance of disordered heterostructures, J. Magn. Magn. Mater., 264, 86–94 (2003).

    Article  Google Scholar 

  8. A. Y. Zubarev, On the theory of the magnetic deformation of ferrogels, Soft Matter, 8, 3174–3179 (2012).

    Article  Google Scholar 

  9. F. R. Szofran, W. L. Burmester, D. J. Sellmyer, and L. G. Rubin, Technique for rapid Faraday susceptibility measurements, Rev. Sci. Instrum., 46, No. 9, 1186–1187 (1975).

    Article  Google Scholar 

  10. A.-F. Ngomsik, A. Bee, M. Draye, G. Cote, and V. Cabuil, Magnetic nano- and microparticles for metal removal and environmental applications: A review, C. R. Chim., 8, 963–970 (2005).

    Article  Google Scholar 

  11. C. T. Yavuz, J. T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson, and V. L. Colvin, Low-fi eld magnetic separation of monodisperse Fe3O4 nanocrystals, Science, 314, 964–967 (2006).

    Article  Google Scholar 

  12. A. Skumiel, A. Jozefczak, T. Hornowski, and M. Labowski, The infl uence of the concentration of ferroparticles in a ferrofluid on its magnetic and acoustic properties, J. Phys. D: Appl. Phys., 36, 3120–3124 (2003).

    Article  Google Scholar 

  13. A. Chevalier and M. Le Floc'h, Dynamic permeability in soft magnetic composite materials, J. Appl. Phys., 90, 3462–3465 (2001).

    Article  Google Scholar 

  14. S. Fukui, H. Nakajima, A. Ozone, M. Hayatsu, M. Yamaguchi, T. Sato, H. Imaizumi, S. Nishijima, and T. Watanabe, Study on open gradient magnetic separation using multiple magnetic field sources, IEEE Trans. Appl. Supercond., 12, No. 1, 959–962.

  15. B. Weidenfeller, M. Anhalt, and W. Riechemann, Variation of magnetic properties of composites fi lled with soft magnetic FeCoV particles by particle alignment in a magnetic fi eld, J. Magn. Magn. Mater., 320, 362–365 (2008).

    Article  Google Scholar 

  16. A. V. Sandulyak, Magnetic Filtration Cleaning of Liquids and Gases [in Russian], Khimiya, Moscow (1988); https://dlib.rsl.ru/viewer/01001440011#?page=136.

    Google Scholar 

  17. A. A. Sandulyak, A. V. Sandulyak, M. N. Polismakova, D. O. Kiselev, V. A. Ershova, and D. A. Sandulyak, The use of the spherical pole pieces for performing the Faraday balance method, Instrum. Exp. Tekh., 61, No. 1, 123–126 (2018).

    Article  Google Scholar 

  18. A. V. Sandulyak, A. A. Sandulyak, M. N. Polismakova, D. O. Kiselev, D. A. Sandulyak, and V. A. Ershova, The working zone in the interpolar area of the Faraday balance: An approach to testing the magnetic force factor stability criterion, ICMAA 2017, Tokyo, MATEC Web Conf., 108, 01007 (2017).

    Article  Google Scholar 

  19. A. V. Sandulyak, A. A. Sandulyak, M. N. Polismakova, D. O. Kiselev, and D. A. Sandulyak, Faraday magnetometer with pole hemisphere pieces: Identifying the zone of a stable force factor, Ross. Tekhnol. Zh., 5, No. 6, 43–54 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sandulyak.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 1, pp. 216–221, January–February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandulyak, A.V., Sandulyak, A.A., Ershova, V.A. et al. Comments on the Selection of a Dispersed Sample to Determine the Magnetic Susceptibility of the Sample and the Dispersed Phase Particles. J Eng Phys Thermophy 93, 210–215 (2020). https://doi.org/10.1007/s10891-020-02110-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02110-x

Keywords

Navigation