Skip to main content
Log in

Elastomeric Compounds with Fine-Grained Carbonic Additives

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The influence of three different nanomaterials (nonfunctionalized and functionalized with amino and oxygencontaining groups) forming a part of elastomeric compounds based on a natural SMR-10 rubber and a butadienenitrile BNKS-18 rubber on the interfacial interactions of these rubbers with an active and a semiactive carbons blacks added to them was investigated. For the purpose of estimating the action of the indicated nanomaterials incorporated into the composition of a rubber on its properties and the interaction of the rubber with a carbon black introduced into the compound, investigations have been performed on determination of the bound rubber in such a compound, the qualitative characteristics of the distribution of an extender in it (the modulus of elasticity and the shear modulus of the compound in the cases of its small and large deformations, respectively, and the difference between these moduli representing the complex dynamic modulus of the compound), and its Mooney viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Vilgis, G. Heinrich, and M. Klüppel, Reinforcement of Polymer Nanocomposites: Theory, Experiments and Applications, Cambridge, Cambridge University Press (2010).

    Google Scholar 

  2. A. Limper, Mixing of Rubber Compounds, Hanser Publishers, Munich (2012).

    Book  Google Scholar 

  3. Anqiang Zhang, Lianshi Wang, Yaling Lin, and Xiongfei Mi, Carbon black fi lled powdered natural rubber: Preparation, particle size distribution, mechanical properties, and structures, J. Appl. Polymer Sci., 101, 1763–1774 (2006).

  4. P. M. Visakh, T. Sabu, K. Ch. Arup, and P. M. Aji, Advances in Elastomers II: Composites and Nanocomposites, RSC Publishing, Cambridge (2014).

    Google Scholar 

  5. T. Sabu, J. M. Hanna, J. Jithin, H. Ch. Chin, and A. P. Laly, Natural Rubber Materials: Volume 2: Composites and Nanocomposites, The Royal Society of Chemistry, Cambridge (2014).

    Google Scholar 

  6. Jean Le Bras and Eugene Papirer, The fi ller–elastomer chemical link and the reinforcement of rubber, J. Appl. Polym. Sci., 22, 525–531 (1978).

  7. Y.-W. Mai and Z. Z. Yu (Eds.), Polymer Nanocomposites, Woodhead Publishing Ltd, Cambridge (2006).

    Google Scholar 

  8. I. Yu. Averko-Antonovich and R. T. Bikmullin, Methods of Investigating the Structure and Properties of Polymers [in Russian], Kazan Gos. Tekh. Univ., Kazan (2002).

    Google Scholar 

  9. Standard test method for rubber properties — measurement of cure and after-cure dynamic properties using a rotorless shear rheometer: in ASTM D6601–02 (2008).

  10. B. S. Grishin, Theory and Practice of the Reinforcement of Polymers, State and Development Directions [in Russian], Izd. Kazan Nats, Issled. Tekh. Univ., Kazan (2016).

    Google Scholar 

  11. Determination of the viscosity, the stress relaxation, and the precure characteristics of a rubber with the use of a Mooney viscosimeter, in: Rubbers and Rubber Compounds, Standard R 54552-2011 [in Russian], Standartinform, Moscow (2013).

  12. J. Mark, Science and Technology of Rubber, Academic Press (2005).

  13. R. C. Bansal, J. B. Donnet, and F. Stoeckli (Eds.), Active Carbon, Marcel Dekker Inc., New York (1988).

    Google Scholar 

  14. M.-J. Wang, S. Wolff, and J.-B. Donnet, Filler–elastomer interactions. Part I. Silica surface energies and interactions with model compounds, Rubber Chem. Technol., 64, No. 4, 559–576 (1991).

  15. Bandyopadhyay Sumanda, P. P. De, D. K. Tripathy, and S. K. Dе, Effect of chemical interaction between surface oxidized carbon black and carboxylated nitrile rubber on dynamic properties, J. Appl. Polymer Sci., 58, 719–727 (1995).

  16. Yu. F. Shutilin, Physical Chemistry of Polymers [in Russian], Voronezh Obl. Tipogr., Voronezh (2012).

    Google Scholar 

  17. A. Roychoudhury and P. P. De, Elastomer–carbon black interaction: Infl uence of elastomer chemical structure and carbon black surface chemistry on bound rubber formation, J. Appl. Polym. Sci., 55, 9–15 (1995).

    Article  Google Scholar 

  18. A. Roychoudhury, S. K. De, P. P. De, J. A. Ayala, and G. A. Joyce, Chemical interaction between carbon black and elastomers — crosslinking of chlorosulfonated polyethylene by carbon black, Rubber Chem. Technol., 67, No. 4, 662–671 (1994).

    Article  Google Scholar 

  19. J. Léopoldès, C. Barrès, J. L. Leblanc, and P. Georget, Infl uence of fi ller–rubber interactions on the viscoelastic properties of carbon-black-fi lled rubber compounds, J. Appl. Polym. Sci., 91, 577–588 (2004).

    Article  Google Scholar 

  20. N. V. Belozerov, Technology of Rubber [in Russian], Khimiya, Moscow (1979).

    Google Scholar 

  21. G. M. Bartenev and Yu. S. Zuev, Strength and Destruction of Highly Elastic Materials [in Russian], Khimiya, Moscow (1964).

    Google Scholar 

  22. I. A. Tugorskii, Introduction to Colloid Chemistry, Part 1. Surface Phenomena and Adsorption of a Gas on a Solid Surface [in Russian], MITKhT im. M. V. Lomonosova, Moscow (2007).

  23. J. B. Donnet, Carbon Black, Marcel Dekker, New York (1993).

    Google Scholar 

  24. P. G. Maier and D. Göritz, Molecular interpretation on the Payne effect, Kautsch Gummi Kunstst., No. 49, 18–21 (1996).

    Google Scholar 

  25. A. N. Gent and Y. C. Hwang, Elastic behavior of a rubber layer bonded between two rigid spheres, Rubber Chem. Technol., 61, No. 4, 630–638 (1988).

    Article  Google Scholar 

  26. M. J. Wang, Effect of polymer–fi ller and fi ller–fi ller interactions on dynamic properties of fi lled vulcanizates, Rubber Chem. Technol., 71, No. 3, 520–589 (1998).

    Article  Google Scholar 

  27. Zh. S. Shashok, N. R. Prokopchuk, K. V. Vishnevskii, A. V. Krauklis, K. O. Borisevich, and I. O. Borisevich, Rheological properties of rubber compounds with fi nely divided carbon additives, J. Eng. Phys. Thermophys., 91, No. 1, 146–151 (2018).

    Article  Google Scholar 

  28. Sung-Seen Choi, Effect of bound rubber on characteristics of highly fi lled styrene–butadiene rubber compounds with different types of carbon black, J. Appl. Polym. Sci., 93, 1001–1006 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. P. Uss or S. A. Zhdanok.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 1, pp. 88–95, January–February, 2020. Original article submitted June 29, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashok, Z.S., Prokopchuk, N.R., Uss, E.P. et al. Elastomeric Compounds with Fine-Grained Carbonic Additives. J Eng Phys Thermophy 93, 83–90 (2020). https://doi.org/10.1007/s10891-020-02093-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02093-9

Keywords

Navigation