Skip to main content
Log in

Distinctive Features of the Use of Nanofluids To Enhance Boiling Heat Transfer

  • NANOSTRUCTURES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The authors have analyzed the results of investigations of nucleate and fi lm regimes of boiling of nanofluids. In the nucleate regime of boiling of nanofluids, the increase in the critical heat flux compared to a pure fluid is observed; here, there can be both an increase and a decrease in the heat-transfer coefficient. The increase in the critical heat flux during the boiling of a nanofluid is linked to the formation of a deposited nanoparticle layer on a heated surface, which contributes to the change in the microcharacteristics of the process of boiling and to the decrease in the wetting angle of the surface. Results of theoretical investigation of the fi lm boiling of a nanofluid on a vertical heated surface have been presented. It has been shown that the greatest infl uence on the processes of heat and mass transfer in a vapor film is exerted by the superheating of the wall, the relation of the temperature and Brownian diffusions, and the concentration of nanoparticles in the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofl uids: A review, Int. J. Therm. Sci., No. 46, 1–19 (2007).

    Article  Google Scholar 

  2. S. K. Das, S. U. S. Choi, and H. E. Patel, Heat transfer in nanofl uids — A review, Heat Transf. Eng., 27, No. 10, 3–19 (2008).

    Article  Google Scholar 

  3. A. S. Surtaev, V. S. Serdyukov, and A. N. Pavlenko, Nanotechnologies in thermophysics: Boiling heat transfer and burnout phenomena, Ross. Nanotekhnol., 11, Nos. 11−12, 18–32 (2016).

  4. G. Ramesh and N. K. Prabhu, Review of thermo-physical properties, wetting and heat transfer characteristics of nanofl uids and their applicability in industrial quench heat treatment, Nanoscale Res. Lett., 6, Article number 334, 1–15 (2011).

  5. X. Li, S. C. P. Cheung, and J. Tu, Nucleate boiling of dilute nanofl uids — Mechanism exploring and modeling, Int. J. Therm. Sci., No. 84, 323–334 (2014).

    Article  Google Scholar 

  6. S. Kakaç and F. Pramuanjaroenkij, Analysis of convective heat transfer enhancement by nanofl uids: Single-phase and two-phase treatments, J. Eng. Phys. Thermophys., 89, No. 3, 758–793 (2016).

    Article  Google Scholar 

  7. V. I. Terekhov, S. V. Kalinina, and V. V. Lemanov, Mechanism of heat transfer in nanofl uids: current status of the problem (review), Part. 2. Convective heat transfer, Teplofi z. Aéromekh., 17, No. 2, 173–188 (2010).

  8. R. N. Hegde, S. S. Rao, and R. P. Reddy, Flow visualization, critical heat fl ux enhancement, and transient characteristics in pool boiling using nanofl uids, J. ASTM Int., 9, No. 5, 1−16 (2012).

    Article  Google Scholar 

  9. S. Witharana, Boiling of Refrigerants on Enhanced Surfaces and Boiling of Nanofl uids, PhD Thesis, The Royal Institute of Technology, Stockholm, Sweden (2003).

  10. S. M. You, J. H. Kim, and K. H. Kim, Effect of nanoparticles on critical heat fl ux of water in pool boiling heat transfer, Appl. Phys. Lett., 83, No. 16, 3374–3376 (2003).

    Article  Google Scholar 

  11. I. C. Bang and S. H. Chang, Boiling heat transfer performance and phenomena of Al2O3–water nanofl uids from a plain surface in a pool, Int. J. Heat Mass Transf., 48, 2407–2419 (2005).

    Article  Google Scholar 

  12. W. M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, 74, 969–979 (1952).

    Google Scholar 

  13. R. A. Taylor and P. E. Phelan, Pool boiling of nanofl uids: Comprehensive review of existing data and limited new data, Int. J. Heat Mass Transf., 52, 5339–5347 (2009).

    Article  Google Scholar 

  14. S. M. Kwark, R. Kumar, G. Moreno, J. Yoo, and S. M. You, Pool boiling characteristics of low concentration nanofl uids, Int. J. Heat Mass Transf., 53, 972–981 (2010).

    Article  Google Scholar 

  15. T. Okawa, M. Takamura, and T. Kamiya, Boiling time effect on CHF enhancement in pool boiling of nanofluids, Int. J. Heat Mass Transf., 55, 2719–2725 (2012).

    Article  Google Scholar 

  16. A. V. Minakov, M. I. Pryazhnikov, D. V. Guzei, G. M. Zeer, and V. Ya. Rudyak, The experimental study of nanofl uids boiling crisis on cylindrical heaters, Int. J. Therm. Sci., No. 116, 214–223 (2017).

    Article  Google Scholar 

  17. A. V. Minakov, M. I. Pryazhnikov, V. Zhigarev, and V. Ya. Rudyak, The investigation of boiling crisis of nanofl uids, MATEC Web Conf., 84, No. 3, 4 pp. (2016).

  18. I. L. Pioro, W. M. Rohsenow, and S. S. Doerffer, Nucleate pool-boiling heat transfer. Part 1: Review of parametric effects of boiling surface, Int. J. Heat Fluid Flow, 47, No. 23, 5033–5044 (2004).

  19. X. D. Li, K. Li, J. Y. Tu, and J. Buongiorno, On two-fl uid modeling of nucleate boiling of dilute nanofl uids, Int. J. Heat Mass Transf., 69, 443–450 (2014).

    Article  Google Scholar 

  20. H. Kim and M. Kim, Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofl uids, J. Heat Mass Transf., Special Issue, 45, 991–998 (2009).

  21. V. I. Tolubinskii, Boiling Heat Transfer [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  22. Yu. A. Zeigarnik, Transformed boiling and the enhancement of heat transfer, Teplofi z. Vys. Temp., 39, No. 3, 479–487 (2001).

    Google Scholar 

  23. A. Surtaev, D. Kuznetsov, V. Serdyukov, A. Pavlenko, V. Kalita, D. Komlev, A. Ivannikov, and A. Radyuk, Structured capillary-porous coatings for enhancement of heat transfer at pool boiling, Appl. Therm. Eng., No. 133, 532–542 (2018).

    Article  Google Scholar 

  24. A. S. Surtaev, A. N. Pavlenko, D. V. Kuznetsov, V. I. Kalita, D. I. Komlev, A. Yu. Ivannikov, and A. A. Radyuk, Heat transfer and crisis phenomena at pool boiling of liquid nitrogen on the surfaces with capillary-porous coatings, Int. J. Heat Mass Transf., 108, 146–155 (2017).

    Article  Google Scholar 

  25. H. Kim, B. Truond, J. Buongiorno, and L.-W. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett., No. 98, 083121 (2011).

  26. J. Y. Tu and G. H. Yeoh, On numerical modeling of low-pressure subcooled boiling fl ows, Int. J. Heat Mass Transf., 45, 1197–1209 (2002).

    Article  Google Scholar 

  27. G. H. Yeoh and J. Y. Tu, Population balance modeling for bubbly fl ows with heat and mass transfer, Chem. Eng. Sci., No. 59, 3125–3139 (2004).

    Article  Google Scholar 

  28. X. D. Li, W. Wei, R. S. Wang, and J. M. Shi, Numerical and experimental investigation of heat transfer on heating surface during subcooled boiling fl ow of liquid nitrogen, Int. J. Heat Mass Transf., 52, 1510–1516 (2009).

    Article  Google Scholar 

  29. G. H. Yeoh, S. C. P. Cheung, J. Y. Tu, and M. K. M. Ho, Fundamental consideration of wall heat partition of vertical subcooled boiling fl ows, Int. J. Heat Mass Transf., 51, 3840–3853 (2008).

    Article  Google Scholar 

  30. N. Basu, G. R. Warrier, and V. K. Dhir, Wall heat fl ux partitioning during subcooled fl ow boiling: Part 1, J. Heat Transf., No. 127, 131–140 (2005).

    Article  Google Scholar 

  31. A. A. Avramenko, M. M. Kovetskaya, and A. I. Tyrinov, Features of boiling heat transfer of a nanofl uid, Prom. Teplotekh., 30, No. 3, 25–34 (2017).

    Google Scholar 

  32. V. E. Zhukov, A. N. Pavlenko, M. I. Moiseev, and D. V. Kuznetsov, Dynamics of the infl uence of a self-sustained evaporation front in a liquid with additions of nanosize particles, Teplofi z. Vys. Temp., 55, No. 1, 85-93 (2017).

    Google Scholar 

  33. V. E. Zhukov, M. I. Moiseev, and D. V. Kuznetsov, Visual study of propagation of self-sustained evaporation front within the thickness of a thermal liquid layer, J. Phys.: Conf. Ser., IOP Publishing, 754, Article number 042013, 5 pp. (2016).

  34. K. N. Prabhu and P. Fernandes, Nanoquenchants for industrial heat treatment, J. Mater. Eng. Perform., 17, No. 1, 101–103 (2008).

    Article  Google Scholar 

  35. H. Kim, G. DeWitt, T. McKrell, J. Buongiorno, and L. W. Hu, On the quenching of steel and zircaloy spheres in waterbased nanofl uids with alumina, silica and diamond nanoparticles, Int. J. Multiphase Flow, No. 35, 427–438 (2009).

    Article  Google Scholar 

  36. H. Lotfi and M. B. Shafi i, Boiling heat transfer on a high temperature silver sphere in nanofl uid, Int. J. Therm. Sci., No. 48, 2215–2220 (2009).

  37. H. Kim, J. Buongiorno, L. W. Hu, and T. McKrell, Nanoparticle deposition effects on the minimum heat fl ux point and quench front speed during quenching in water-based alumina nanofl uids, Int. J. Heat Mass Transf., 53, 1542–1553, (2010).

    Article  Google Scholar 

  38. A. A. Avramenko, I. V. Shevchuk, A. I. Tyrinov, and D. G. Blinov, Heat transfer in stable fi lm boiling of a nanofl uid over a vertical surface, Int. J. Therm. Sci., No. 92, 106–118 (2015).

    Article  Google Scholar 

  39. A. A. Avramenko, I. V. Shevchuk, S. Abdallah, D. G. Blinov, S. Harmandd, and A. I. Tyrinov, Symmetry analysis for film boiling of nanofl uids on a vertical plate using a nonlinear approach, J. Mol. Liq., No. 223, 156–164 (2016).

    Article  Google Scholar 

  40. L. A. Bromley, Heat transfer in stable fi lm boiling, Chem. Eng. Prog., 46, 211–227 (1950).

    Google Scholar 

  41. I. C. Bang, J. Buongiorno, L. W. Yu, and H. Wang, Measurement of key pool boiling parameters in nanofl uids for nuclear applications, J. Power Energy Syst., No. 2, 340–351 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Tyrinov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 1, pp. 78–87, January–February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avramenko, A.A., Kovetskaya, M.M., Tyrinov, A.I. et al. Distinctive Features of the Use of Nanofluids To Enhance Boiling Heat Transfer. J Eng Phys Thermophy 93, 74–82 (2020). https://doi.org/10.1007/s10891-020-02092-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02092-w

Keywords

Navigation