Skip to main content
Log in

Development of Heat Pipes for Cooling Thermally Stressed Electronics Elements

  • HEAT CONDUCTION AND HEAT TRANSFER IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An algorithm for the development of heat pipes involving the choice of the working fluid, materials for the casing and wick, and the methods of calculating the limits of heat-transmitting ability of heat pipes is suggested. This algorithm has been applied successfully for creating different types of wicks and heat pipes on the basis of which a cooling system has been created for a high-power light-emitting diode lantern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Khanna, Fundamentals of Solid State Lighting, Taylor & Francis Group, New York (2014).

    Book  Google Scholar 

  2. Y. Huaiyu, S. Koh, H. Zeijl, A. W. J. Gielen, and Z. Guoqi, A review of passive thermal management of LED module, J. Semicond., 32, No. 1, 0140081–0140084 (2011).

    Google Scholar 

  3. Thermal Management of White LEDs: Building Technologies Program, Department of Energy, US, PNNL-SA-51901 (2007).

  4. B. Zohuri, Heat Pipe Design and Technology: Modern Applications for Practical Thermal Management, 2nd edn., Springer Intern. Publ., Switzerland (2016).

    Book  Google Scholar 

  5. H. N. Chaudhrya, B. R. Hughesa, and S. A. Ghanib, A review of heat pipe systems for heat recovery and renewable energy applications, Renew. Sustain. Energy Rev., 16, No. 4, 2249–2259 (2012).

    Article  Google Scholar 

  6. L. L. Vasiliev, A. G. Kulakov, L. L. Vasiliev Jr., M. I. Rabetskii, and A. A. Antukh, Miniature heat pipes for thermal control of radio-electronic equipment, Heat Transf. Res., 38, Issue 3, 245–258 (2007).

    Article  Google Scholar 

  7. H . Lee, Тhermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, John Wiley & Sons, Inc., New Jersey (2010).

  8. A. Faghri, Heat pipes: review, opportunities and challenges, Front. Heat Pipes, 5, Issue 1, 1–48 (2014).

    Article  Google Scholar 

  9. D. Reay, R. J. McGlen, and P. Kew, Heat Pipes. Theory, Design and Application, Elsevier, Oxford (2014).

    Google Scholar 

  10. S. W. Chi, Heat Pipe Theory and Practice, McGraw-Hill, New York (1976).

    Google Scholar 

  11. L. L. Vasiliev and S. V. Konev, Heat Transmitting Pipes [in Russian], Nauka i Tekhnika, Minsk (1972).

  12. R. I. Agladze, N. G. Gofman, and N. T. Kudryavtsev, Applied Electrochemistry [in Russian], Khimiya, Moscow (1975).

    Google Scholar 

  13. K. Delendik, N. Kolyago, O. Penyazkov, and O. Voitik, Determination of permissible heat fluxes in the heat pipe, in: AIP Conf. Proc., 1978, Issue 1, 470028–470031 (2018).

  14. K. Delendik, O. Voitik, and N. Kolyago, Design of cooling system for high-power LED luminaire, in: AIP Conf. Proc., 2116, 030020–030023 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kolyago.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 6, pp. 2577–2584, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delendik, K.I., Kolyago, N.V., Penyazkov, O.G. et al. Development of Heat Pipes for Cooling Thermally Stressed Electronics Elements. J Eng Phys Thermophy 92, 1529–1536 (2019). https://doi.org/10.1007/s10891-019-02073-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-02073-8

Keywords

Navigation