Skip to main content
Log in

Mathematical Model of the Effect of Self-Preservation of Gas Hydrates

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A diffusion model of dissociation of a plane layer of gas hydrate into ice and gas has been presented, which permits modeling the effect of self-preservation of gas hydrates. In this model, the gas-hydrate dissociation into ice and gas is described with account taken of the internal kinetics of the process and of the pore structure of the formed ice layer. Calculated data obtained within the framework of a quasi-stationary approximation for the cases of dissociation of plane layers of methane hydrate and carbon-dioxide hydrate into ice and gas have been given as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, and X.-S. Li, Review of natural gas hydrates as an energy resource: prospects and challenges, Appl. Energy, 162, 1633–1652 (2016).

    Article  Google Scholar 

  2. Y. Konno, T. Fujii, A. Sato, K. Akamine, M. Naiki, Y. Masuda, K. Yamamoto, and J. Nagao, Key findings of the world’s first offshore methane hydrate production test off the coast of Japan: toward future commercial production, Energy Fuels, 31, No. 3, 2607–2616 (2017).

    Article  Google Scholar 

  3. G. G. Tsypkin, Formation of carbon dioxide hydrate at the injection of carbon dioxide into a depleted hydrocarbon field, Fluid Dyn., 49, No. 6, 789–795 (2014).

    Article  MathSciNet  Google Scholar 

  4. V. Sh. Shagapov, N. G. Musakaev, and M. K. Khasanov, Formation of gas hydrates in a porous medium during an injection of cold gas, Int. J. Heat Mass Transf., 84, 1030–1039 (2015).

    Article  Google Scholar 

  5. M. K. Khasanov, Investigation of regimes of gas hydrate formation in a porous medium, partially saturated with ice, Thermophys. Aeromech., 22, No. 2, 245–255 (2015).

    Article  Google Scholar 

  6. É. A. Bondarev, I. I. Rozhin, V. V. Popov, and K. K. Argunova, Assessing the possibility of underground storage of natural-gas hydrates in the permafrost zone, Kriosfera Zemli, 19, No. 4, 64–74 (2015).

    Google Scholar 

  7. V. M. Vorotyntsev, V. M. Malyshev, I. V. Vorotyntsev, and S. V. Battalov, Improving the efficiency of gas hydrate crystallization due to the application of gas separation membranes, Theor. Found. Chem. Eng., 50, No. 4, 459–468 (2016).

    Article  Google Scholar 

  8. M. K. Khasanov and V. Sh. Shagapov, Methane gas hydrate decomposition in a porous medium upon injection of a warm carbon dioxide gas, J. Eng. Phys. Thermophys., 89, No. 5, 1123–1133 (2016).

    Article  Google Scholar 

  9. V. Sh. Shagapov, A. S. Chiglintseva, and S. V. Belova, On the theory of formation of a gas hydrate in a heat-insulated space compacted with membrane, J. Eng. Phys. Thermophys., 90, No. 5, 1147–1161 (2017).

    Article  Google Scholar 

  10. G. Rehder, R. Eckl, M. Elfgen, A. Falenty, R. Hamann, N. Kähler, W. F. Kuhs, H. Osterkamp, and C. Windmeier, Methane hydrate pellet transport using the self-preservation effect: a techno-economic analysis, Energies, 5, No. 7, 2499–2523 (2012).

    Article  Google Scholar 

  11. A. Falenty, W. F. Kuhs, M. Glockzin, and G. Rehder, "Self-preservation" of CH4 hydrates for gas transport technology: Pressure–temperature dependence and ice microstructures, Energy Fuels, 28, No. 10, 6275–6283 (2014).

    Article  Google Scholar 

  12. H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh, and T. Murayama, Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate, Chem. Eng. Sci., 118, 208–213 (2014).

    Article  Google Scholar 

  13. H. P. Veluswamy, A. Kumar, Y. Seo, J. D. Lee, and P. Linga, A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates, Appl. Energy, 216, 262–285 (2018).

    Article  Google Scholar 

  14. V. A. Istomin, V. S. Yakushev, N. A. Makhonina, V. G. Kwon, and E. M. Chuvilin, Self-preservation phenomenon of gas hydrates, Gas Ind. Russ., No. 4, 16–27 (2006).

  15. O. S. Subbotin, V. R. Belosludov, E. N. Brodskaya, E. M. Piotrovskaya, and V. V. Sizov, A computer simulation of the mechanism of self-conservation of gas hydrates, Russ. J. Phys. Chem. A, 82, No. 8, 1303–1308 (2008).

    Article  Google Scholar 

  16. A. Falenty and W. F. Kuhs, "Self-preservation" of CO2 gas hydrates–surface microstructure and ice perfection, J. Phys. Chem. B, 113, No. 49, 15975–15988 (2009).

    Article  Google Scholar 

  17. H. Ohno, O. Nishimura, K. Suzuki, H. Narita, and J. Nagao, Morphological and compositional characterization of self-preserved gas hydrates by low-vacuum scanning electron microscopy, Phys. Chem. Chem. Phys., 12, No. 9, 1661–1665 (2011).

    Article  Google Scholar 

  18. D. Sun, Y. Shimono, S. Takeya, and R. Ohmura, Preservation of carbon dioxide clathrate hydrate at temperatures below the water freezing point under atmospheric pressure, Ind. Eng. Chem. Res., 50, No. 24, 13854–13858 (2011).

    Article  Google Scholar 

  19. A. Hachikubo, S. Takeya, E. Chuvilin, and V. Istomin, Preservation phenomena of methane hydrate in pore spaces, Phys. Chem. Chem. Phys., 13, No. 39, 17449–17452 (2011).

    Article  Google Scholar 

  20. V. E. Nakoryakov and S. Ya. Misyura, The features of self-preservation for hydrate systems with methane, Chem. Eng. Sci., 104, 1–9 (2013).

    Article  Google Scholar 

  21. A. S. Stoporev, A. Yu. Manakov, L. K. Altunina, A. V. Bogoslovsky, L. A. Strelets, and E. Ya. Aladko, Unusual self-preservation of methane hydrate in oil suspensions, Energy Fuels, 28, No. 2, 794–802 (2014).

    Article  Google Scholar 

  22. V. E. Nakoryakov and S. Ya. Misyura, Kinetics of methane hydrate dissociation, Dokl. Phys. Chem., 464, No. 2, 244–246 (2015).

    Article  Google Scholar 

  23. V. P. Mel’nikov, L. S. Podenko, A. N. Nesterov, A. O. Drachuk, N. S. Molokitina, and A. M. Reshetnikov, Self-preservation of methane hydrates produced in "dry water," Dokl. Chem., 466, No. 2, 53–56 (2016).

    Article  Google Scholar 

  24. S. Takeya, S. Muromachi, Y. Yamamoto, H. Umeda, and S. Matsuo, Preservation of CO2 hydrate under different atmospheric conditions, Fluid Phase Equilibria, 413, 137–141 (2016).

    Article  Google Scholar 

  25. É. D. Ershov, Yu. P. Lebedenko, E. M. Chuvilin, V. A. Istomin, and V. S. Yakushev, Features of the existence of gas hydrates in the cryolithic zone, Dokl. Akad. Nauk SSSR, 321, No. 4, 788–791 (1991).

    Google Scholar 

  26. V. S. Yakushev, E. V. Perlova, and N. A. Makhonina, Metastable (relict) gas hydrates: occurrence, resources, and prospects for utilization, Kriosfera Zemli, 9, No. 1, 68–72 (2005).

    Google Scholar 

  27. V. Sh. Shagapov and B. I. Tazetdinov, On the theory of the decomposition of a metastable gas hydrate, Theor. Found. Chem. Eng., 47, No. 4, 388–396 (2013).

    Article  Google Scholar 

  28. E. P. Zaporozhets and N. A. Shostak, Adsorption-energy model of the kinetics of the formation and dissociation of gas hydrates, Theor. Found. Chem. Eng., 49, No. 3, 306–312 (2015).

    Article  Google Scholar 

  29. T. Komai, S.-P. Kang, J.-H. Yoon, Y. Yamamoto, T. Kawamura, and M. Ohtake, In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point, J. Phys. Chem. B, 108, No. 23, 8062–8068 (2004).

    Article  Google Scholar 

  30. C.-Y. Sun and G.-J. Chen, Methane hydrate dissociation above 0oC and below 0oC, Fluid Phase Equilibria, 242, No. 2, 123–128 (2006).

    Article  Google Scholar 

  31. V. A. Vlasov, Diffusion model of gas hydrate dissociation into ice and gas: simulation of the self-preservation effect, Int. J. Heat Mass Transf., 102, 631–636 (2016).

    Article  Google Scholar 

  32. V. A. Vlasov, Phenomenological diffusion theory of formation of gas hydrate from ice powder, Theor. Found. Chem. Eng., 46, No. 6, 576–582 (2012).

    Article  Google Scholar 

  33. V. A. Vlasov, Formation and dissociation of gas hydrate in terms of chemical kinetics, React. Kinet. Mech. Catal., 110, No. 1, 5–13 (2013).

    Article  Google Scholar 

  34. V. A. Vlasov, Diffusion model of gas hydrate formation from ice, Heat Mass Transf., 52, No. 3, 531–537 (2016).

    Article  Google Scholar 

  35. V. Sh. Shagapov, A. S. Chiglintseva, and G. R. Rafikova, On quasistationary solution of the equation of gas diffusion in hydrate layer, Tomsk State Univ. J. Math. Mech., No. 48, 107–117 (2017).

    Article  MathSciNet  Google Scholar 

  36. L. A. Stern, S. Circone, S. H. Kirby, and W. B. Durham, Anomalous preservation of pure methane hydrate at 1 atm, J. Phys. Chem. B., 105, No. 9, 1756–1762 (2001).

    Article  Google Scholar 

  37. W. F. Kuhs, G. Genov, D. K. Staykova, and T. Hansen, Ice perfection and onset of anomalous preservation of gas hydrates, Phys. Chem. Chem. Phys., 6, No. 21, 4917–4920 (2004).

    Article  Google Scholar 

  38. S. Circone, L. A. Stern, S. H. Kirby, W. B. Durham, B. C. Chakoumakos, C. J. Rawn, A. J. Rondinone, and Y. Ishii, CO2 hydrate: synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate, J. Phys. Chem. B, 107, No. 23, 5529–5539 (2003).

    Article  Google Scholar 

  39. T. Ikeda-Fukazawa, K. Kawamura, and T. Hondoh, Mechanism of molecular diffusion in ice crystals, Mol. Simul., 30, Nos. 13–15, 973–979 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vlasov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 6, pp. 2449–2457, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasov, V.A. Mathematical Model of the Effect of Self-Preservation of Gas Hydrates. J Eng Phys Thermophy 92, 1406–1414 (2019). https://doi.org/10.1007/s10891-019-02057-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-02057-8

Keywords

Navigation