Skip to main content
Log in

Numerical Study of Laminar Natural Convection in a Finned Annulus: Low Isothermal Blocks Positions

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Natural convection in a finned concentric annulus filled with air is numerically simulated, using the centered finite difference method if the alternating direction implicit scheme is taken into account. Two isothermal blocks are attached to the inner cylinder and placed symmetrically in the low section of the annulus. The radius ratio, as well as the dimensionless width and height of the blocks, are kept constant. The effect of the Rayleigh number Ra varying between 1000 and 10,000 on the flow pattern and heat transfer rate is discussed. It is shown that unicellular and bicellular flows are observed, and the blocks increase the overall heat transfer rate for the studied range of Ra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Berkengeim, Experimental investigation of heat transfer by natural convection in an enclosure, J. Eng. Phys., 15, No. 6, 1264–1266 (1972).

    Article  Google Scholar 

  2. Yu. E. Karyakin, Transient natural convection in prismatic enclosures of arbitrary cross section, Int. J. Heat Mass Transf., 32, No. 6, 1095–1103 (1989).

    Article  MATH  Google Scholar 

  3. H. R. Nagendra, M. A. Tirunarayanan, and A. Ramachandran, Free convection heat transfer in vertical annuli, Chem. Eng. Sci., 25, No. 4, 605–610 (1970).

    Article  Google Scholar 

  4. J. P. Caltagirone, Heat transfer by natural convection in a porous layer bounded by two coaxial horizontal cylinders, Int. J. Refrig., 1, No. 1, 27–32 (1978).

    Article  Google Scholar 

  5. B. Chandra Shekar, P. Vasseur, L. Robillard, and T. Hung Nguyen, Natural convection in a heat generating fluid bounded by two horizontal concentric cylinders, Can. J. Chem. Eng., 62, No. 4, 482–489 (1984).

    Article  Google Scholar 

  6. M. Al-Arabi, M. A. I. El-Shaarawi, and M. Khamis, Natural convection in uniformly heated vertical annuli, Int. J. Heat Mass Transf., 30, No. 7, 1381–1389 (1987).

    Article  Google Scholar 

  7. A. Cheddadi, J. P. Caltagirone, A. Mojtabi, and K. Vafai, Free two-dimensional convective bifurcation in a horizontal annulus, ASME J. Heat Transf., 114, No. 1, 99–106 (1992).

    Article  Google Scholar 

  8. K. N. Volkov and A. G. Karpenko, Computational modeling of free convection between coaxial cylinders on the basis of a preconditioned form of Navier–Stokes equations, J. Eng. Phys. Thermophys., 87, No. 4, 929–935 (2014).

    Article  Google Scholar 

  9. N. Nagarani, K. Mayilsamy, A. Murugesan, and G. Sathesh Kumar, Review of utilization of extended surfaces in heat transfer problems, Renew. Sustain. Energy Rev., 29, 604–613 (2014).

    Article  Google Scholar 

  10. M. Esmail and A. Mokheimer, Performance of annular fins with different profiles subject to variable heat transfer coefficient, Int. J. Heat Mass Transf., 45, No. 17, 3631–3642 (2002).

    Article  MATH  Google Scholar 

  11. H. T. Chen and W. L. Hsu, Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings, Int. J. Heat Mass Transf., 50, Nos. 9–10, 1750–1761 (2007).

    Article  MATH  Google Scholar 

  12. B. Kundu and D. Barman, An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions, Energy, 36, No. 5, 2572–2588 (2011).

    Article  Google Scholar 

  13. B. Kundu and P. K. Das, Performance analysis and optimization of straight taper fins with variable heat transfer coefficient, Int. J. Heat Mass Transf., 45, No. 24, 4739–4751 (2002).

    Article  MATH  Google Scholar 

  14. M. H. Sharqawy and S. M. Zubair, Efficiency and optimization of straight fins with combined heat and mass transfer — An analytical solution, Appl. Therm. Eng., 28, Nos. 17–18, 2279–2288 (2008).

    Article  Google Scholar 

  15. B. Kundu, Beneficial design of unbaffled shell-and-tube heat exchangers for attachment of longitudinal fins with trapezoidal profile, Case Studies Therm. Eng., 5, 104–112 (2015).

    Article  Google Scholar 

  16. J. C. Chai and S. V. Patankar, Laminar natural convection in internally finned horizontal annuli, Numer. Heat Transf., 24, No. 1, 67–87 (1993).

    Article  Google Scholar 

  17. M. Farinas, A. Garon, and K. Saint-Louis, Study of heat transfer in a horizontal cylinder with fins, Rev. Gén. Therm., 36, No. 5, 398–410 (1997).

    Article  Google Scholar 

  18. M. Rahnama and M. Farhadi, Effect of radial fins on two-dimensional turbulent natural convection in a horizontal annulus, Int. J. Therm. Sci., 43, No. 3, 255–264 (2004).

    Article  Google Scholar 

  19. A. Idrissi, A. Cheddadi, and M. T. Ouazzani, Heat transfer in an annular space fitted with heating isothermal blocks: Numerical bifurcation for low blocks height, Case Studies Therm. Eng., 7, 1–7 (2015).

    Article  Google Scholar 

  20. G. A. Sheikhzadeh, M. Arbaban, and M. A. Mehrabian, Laminar natural convection of Cu–water nanofluid in concentric annuli with radial fins attached to the inner cylinder, Int. J. Heat Mass Transf., 49, No. 3, 391–403 (2013).

    Article  Google Scholar 

  21. Y. R. Li, X. F. Yuan, Y. P. Hu, and J. W. Tang, Experimental research on natural convective heat transfer of water near its density maximum in a horizontal annulus, Exp. Therm. Fluid Sci., 44, 544–549 (2013).

    Article  Google Scholar 

  22. Y. Taher, A. Cheddadi, and M. T. Ouazzani, Heat transfer in an annular space provided with fins: Numerical simulation of the effect of the fins width, Phys. Chem. News, 30, 132–138 (2006).

    Google Scholar 

  23. D. Angeli, G. S. Barozzi, M. W. Collins, and O. M. Kamiyo, A critical review of buoyancy-induced flow transitions in horizontal annuli, Int. J. Therm. Sci., 49, No. 12, 2231–2241 (2010).

    Article  Google Scholar 

  24. T. H. Kuehn and R. J. Goldstein, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders, J. Fluid Mech., 74, No. 4, 695–719 (1976).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cheddadi.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 4, pp. 1099–1105, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touzani, S., Idrissi, A., Cheddadi, A. et al. Numerical Study of Laminar Natural Convection in a Finned Annulus: Low Isothermal Blocks Positions. J Eng Phys Thermophy 92, 1064–1071 (2019). https://doi.org/10.1007/s10891-019-02021-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-02021-6

Keywords

Navigation