Skip to main content
Log in

Methods of Numerical Modeling of a Railgun with Magnetization Turns

  • MISCELLANEA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Methods of numerical modeling of an electromagnetic field in electrodynamic launchers of the railgun type in the presence of magnetization turns have been proposed. Results of employment of different methods to model the electromagnetic field in a modular augmented staged electromagnetic launcher (MASEL) have been presented; a comparison of the results of simulation and full-scale experiments has been made. The issue of the dependence of the electromagnetic field on the configuration of magnetization turns has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. P. Babakov, A. V. Plekhanov, and V. B. Zheleznyi, Range and railgun development results at LS&PA "SOYUZ," IEEE Trans. Magn., 31, No. 1, 259–262 (1995).

    Article  Google Scholar 

  2. Mieke Coffo, Contribution a la Modelisation, a L'optimisation et a L'etude Experimentale d'un Lanceur a Rails Augmente et du Projectile, These pour obtenir le grand de docteur, Autre, Universite de Franche-Comte (2011).

  3. A. Glinov, A. Poltanov, and A. Kondratenko, Comparative analysis of the processes in n-turn and classical railguns, Teplofi z. Vys. Temp., 45, No. 3, 340–346 (2007).

    Google Scholar 

  4. Yu. M. Milekhin, B. V. Kononov, E. B. Syrtsov, K. D. Golovkin, A. K. Kondratenko, and A. E. Poltanov, Concept of construction of multiturn electromagnetic rail launchers and their practical implementation, Izv. Vyssh. Uchebn. Zaved., Fizika, 56, No. 6/3, 42–45 (2013).

  5. T. Watt and M. Crawford, Experimental results from a two-turn 40 mm railgun, IEEE Trans. Magn., 45, No. 1, 490–494 (2009).

    Article  Google Scholar 

  6. M. P. Galanin and Yu. P. Popov, Quasi-Stationary Electromagnetic Fields in Inhomogeneous Media: Mathematical Modeling [in Russian], Nauka, Moscow (1995).

  7. M. P. Galanin and D. L. Sorokin, Calculation of Quasi-Stationary Electromagnetic Fields in Domains Containing Unconnected Conducting Subdomains [in Russian], Preprint No. 19 IMP im. M. V. Keldysha, Russian Academy of Sciences, Moscow (2017).

  8. M. P. Galanin and D. L. Sorokin, Modeling of quasi-stationary electromagnetic fields in domains containing unconnected conducting subdomains, Vesti MGTU im. N. É. Baumana, Ser. Estestvennye Nauki (in print).

  9. Martin Roch, Experiments with the modular augmented staged electromagnetic launcher (MASEL) and comparison to simulations, Proc. Journees JCGE'2014 — SEEDS, Saint-Louis, France (2014).

  10. Martin Roch, Experimental Investigation of Augmented Electromagnetic Accelerators, Dissertation zur Erlangung des akademischen Grades eines Doktor der Ingenieurwissenschaften, Universität Kassel, (2016).

  11. S. S. Urazov, Mathematical Modeling of Multidimensional Quasi-Stationary Electromagnetic Fields in the Channel of an Electrodynamic Launcher, Candidate′s Dissertation in Physics and Mathematics, Moscow (2007).

  12. V. V. Nikol′skii and T. I. Nikol′skaya, Electrodynamics and Propagation of Radio Waves [in Russian], Nauka, Moscow (1989).

  13. A. G. Kulikovskii and G. A. Lyubimov, Magnetic Hydrodynamics [in Russian], Fizmatlit, Moscow (1962).

  14. M. P. Galanin, A. P. Lototskii, Yu. P. Popov, and S. S. Khramtsovskii, Numerical simulation of spatially three-dimensional phenomena on electromagnetic acceleration of conducting macrobodies, Mat. Modelir., 11, No. 8, 3–22 (1999).

    Google Scholar 

  15. A. A. Samarskii, V. F. Tishkin, A. P. Favorskii, and M. Yu. Shashkov, Operator difference schemes, Differ. Uravn., 17, No. 7, 1317–1327 (1981).

    MathSciNet  Google Scholar 

  16. M. P. Galanin, A. P. Lototskii, and S. S. Urazov, Investigation of the thermal mode of a high-speed electrical contact by mathematical modeling methods, J. Eng. Phys. Thermophys., 80, No. 3, 604–611 (2007).

    Article  Google Scholar 

  17. P. L. Kalantarov and L. A. Tseitlin, Calculation of Inductances [in Russian], Énergoatomizdat, Moscow (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Galanin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 3, pp. 846–854, May–June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanin, M.P., Kondratenko, A.K., Lukin, V.V. et al. Methods of Numerical Modeling of a Railgun with Magnetization Turns. J Eng Phys Thermophy 92, 820–828 (2019). https://doi.org/10.1007/s10891-019-01991-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-01991-x

Keywords

Navigation