Skip to main content
Log in

Mathematical Simulation of the Heat and Mass Exchange in the Process of Convective-Radiant Heating of a Blunt-Nosed Body

  • HEAT AND MASS TRANSFER IN DISPERSED AND POROUS MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A numerical analysis of the nonstationary heat and mass exchange in the heat-resistant composite material (a carbon-filled plastic), forming a cover of the conic part of a blunt-nosed body exposed repeatedly to a pulsed laser radiation, has been performed on the basis of the heat model of destruction of such a material. Different regimes of thermochemical destruction of the carbon-filled plastic due to the action of a moderate-intensity laser radiation on it under the conditions where the porous material of the spherical bluntness of the body is not melted were determined. It was established that the gaseous products of pyrolysis of the carbon material as well as its condensed-phase particles and vapor play a dominant role in the shielding of the surface of the conic part of the body from the laser radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Vilenskaya and I. V. Nemchinov, Flash of an absorbed laser radiation and gasdynamic effects associated with this phenomenon, Dokl. Akad. Nauk SSSR, 186, No. 5, 1048−1051 (1969).

    Google Scholar 

  2. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Action of High-Intensity Radiation on Metals [in Russian], Nauka, Moscow (1970).

  3. F. V. Bunkin, N. A. Kirichenko, and B. S. Luk’yanchuk, Thermochemical action of laser radiation, Usp. Fiz. Nauk, 138, No. 9, 43−90 (1982).

    Article  Google Scholar 

  4. L. Ya. Min′ko, V. K. Goncharov, and A. N. Loparev, Investigation of the reflection of laser radiation in the case of its destruction action on opaque dielectrics, Fiz. Khim. Obrab. Mater., No. 1, 31−36 (1979).

  5. A. N. Loparev and L. Ya. Min′ko, Role of particles in the shielding action of their laser erosion plasma torches, Fiz. Khim. Obrab. Mater., No. 2, 26−31 (1985).

  6. L. A. Dombrovskii, É. P. Yukina, A. V. Kolpakov, and V. A. Ivanov, Methods of calculating the thermal destruction of a carbon-filled plastic under the action of a high-intensity infrared radiation, Teplofi z. Vys. Temp., 31, No. 4, 619–625 (1993).

    Google Scholar 

  7. M. N. Libenson, E. B. Yakovlev, and G. D. Shandybina, Interaction of Laser Radiation with a Substance (Power Optics). Pt. II. Laser Heating and Destruction of Materials [in Russian], Izd. ITMO, St. Petersburg (2014).

  8. V. V. Gorskii, Theory of Calculating Ablative Heat Shield Materials [in Russian], Nauchnyi Mir, Moscow (2015).

    Google Scholar 

  9. V. V. Gorskii, I. M. Evdokimov, A. V. Zaprivoda, and V. G. Resh, Attenuation of a radiant heat flow by the vapor of a carbon-filled material in the process of its laser cutting, Teplofi z. Vys. Temp., 52, No. 1, 126–130 (2014).

    Google Scholar 

  10. V. B. Tsvetkov, O. G. Tsar’kova, and S. V. Garnov, Simulation of the temperature fields in plane targets exposed to a high-intensity laser radiation, Tr. Inst. Obshch. Fiz. Ross. Akad. Nauk im. A. M. Prokhorova, 70, 83−90 (2014).

    Google Scholar 

  11. Yu. V. Polezhaev and F. B. Yurevich, Heat Shielding [in Russian], Énergiya, Moscow (1976).

    Google Scholar 

  12. A. M. Grishin and V. M. Fomin, Conjugate and Nonstationary Problems on the Mechanics of Reaction Media [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  13. V. I. Zinchenko and A. S. Yakimov, Regimes of thermochemical destruction of a carbon-phenol material under the action of a heat flow, Fiz. Goreniya Vzryva, 24, No. 2, 141–149 (1988).

    Google Scholar 

  14. A. M. Grishin, A. V. Golovanov, V. I. Zinchenko, E. K. Efimov, and A. S. Yakimov, Mathematical and Physical Simulation of a Heat Shield [in Russian], Izd. Tomsk. Univ., Tomsk (2011).

  15. V. V. Levdanskii, V. G. Leitsina, O. G. Martynenko, and N. V. Pavlyukevich, Heating of a porous body by radiation, in: Action of High-Density Energy Fluxes on Materials [in Russian], Nauka, Moscow (1985), pp. 99−107.

    Google Scholar 

  16. N. S. Zakharov, V. A. Karpenko, and N. I. Shentsov, Interaction of optical radiation with structurally inhomogeneous dielectrics, Teplofi z. Vys. Temp., 27, No. 6, 1174−1178 (1989).

    Google Scholar 

  17. S. M. Scala and L. M. Gilbert, Sublimation of graphite at hypersonic speeds, Raket. Tekh. Kosm., 3, No. 9, 87−126 (1965).

    Google Scholar 

  18. N. N. Rykalin, A. A. Uglov, I. V. Zuev, and A. N. Kokora, Laser and Electron-Beam Processing of Materials, Reference Book [in Russian], Mashinostroenie, Moscow (1985).

    Google Scholar 

  19. P. V. Nikitin, V. M. Ovsyannikov, and N. V. Kholodkov, Breakdown of an organically based composite material in a high-temperature gas flow, J. Eng. Phys. Thermophys., 50, No. 3, 261−266 (1986).

    Article  Google Scholar 

  20. B. A. Zemlyanskii and G. I. Stepanov, On the calculation of the heat exchange in the three-dimensional hypersonic air flow over thin blunt-nosed cones, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 173−177 (1981).

  21. V. N. Kharchenko, Heat exchange in the hypersonic turbulent boundary layer into which a cooling gas is injected through a slot, Teplofi z. Vys. Temp., 10, No. 1, 101−105 (1972).

    Google Scholar 

  22. A. V. Bureev and V. I. Zinchenko, Calculation of the flow of a gas over a spherical blunt-nosed cone in different regimes of flow in the shock layer on its surface in the case of blow of the gas from this surface, Prikl. Mekh. Tekh. Fiz., No. 2, 72–78 (1991).

    Google Scholar 

  23. A. A. Samarskii, Introduction into the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  24. S. Toshiyuki, F. Kazuhisa, A. Keisuke, and S. Takeharu, Experimental study of graphite ablation in nitrogen flow, J. Thermophys. Heat Transf., 22, No. 3, 382–389 (2008).

    Article  Google Scholar 

  25. L. M. Buchnev, A. I. Smyslov, I. A. Dmitriev, A. F. Kuteinikov, and V. I. Kostikov, Experimental investigation of the enthalpy of graphite and glass-carbon quasi-monocrystals in the temperature range 300–3800 K, Teplofi z. Vys. Temp., 25, No. 6, 1120–1125 (1987).

    Google Scholar 

  26. V. V. Lunev, K. M. Magomedov, and V. G. Pavlov, Hypersonic Flow over Blunt-Nosed Cones with Equilibrium Physicochemical Transformations [in Russian], Izd. Vych. Tsentra Akad. Nauk SSSR, Moscow (1968).

    Google Scholar 

  27. L. V. Gurvich, G. A. Khachkuruzova, I. V. Veits, and V. A. Medvedeva, Thermodynamic Properties of Individual Substances, Vol. II [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).

  28. O. M. Alifanov, A. P. Tryanin, and A. L. Lozhkin, Experimental investigation of the method of determining the internal heat-transfer coefficient in a porous body from the solution of the inverse problem, J. Eng. Phys. Thermophys., 52, No. 3, 460−469 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Yakimov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 3, pp. 734–746, May–June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimov, K.N., Ovchinnikov, V.A., Yakimov, A.S. et al. Mathematical Simulation of the Heat and Mass Exchange in the Process of Convective-Radiant Heating of a Blunt-Nosed Body. J Eng Phys Thermophy 92, 710–722 (2019). https://doi.org/10.1007/s10891-019-01981-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-01981-z

Keywords

Navigation