Skip to main content
Log in

Mathematical Modeling of Swirling Herschel–Bulkley Pseudoplastic Fluid Flow in a Cylindrical Channel

  • TRANSFER PROCESSES IN RHEOLOGICAL MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of investigations into the swirling flow of a pseudoplastic fluid with a Herschel–Bulkley yield stress in a cylindrical channel have been presented. It has been established that a growth in the rates of shear strains in flows with a swirl causes the values of effective viscosity to decrease. It has been shown that at one and the same Rossby number, the recirculation strength is the greater the smaller the values of the limiting shear stress, the consistency, and the nonlinearity index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Kutepov, L. D. Polyanin, Z. D. Zapryanov, A. V. Vyaz′min, and D. A. Kazenin, Chemical Hydrodynamics: a Handbook [in Russian], Byuro Kvantum, Moscow (1996).

    Google Scholar 

  2. O. V. Matvienko, F. G. Unger, and V. P. Bazuev, Mathematical Models of Production Processes for Preparation of Bitumen Dispersed Systems [in Russian], Izd. Tomsk. Gos. Arkh.-Stroit. Univ., Tomsk (2015).

    Google Scholar 

  3. E. I. Borzenko, G. R. Shrager, and V. A. Yakutenok, Flow of a non-Newtonian fluid with the free surface in filling a circular pipe, Prikl. Mekh. Tekh. Fiz., 53, No. 2, 53–60 (2012).

    Google Scholar 

  4. A. V. Perminov and T. P. Lyubimova, Stability of steady-state plane-parallel flow of a pseudoplastic fluid in a plane vertical bed, Vych. Mekh. Splosh. Sred, 7, No. 3, 270–278 (2014).

    Google Scholar 

  5. T. P. Lyubimova, Numerical investigation into the convection of a viscoplastic fluid in a closed region, Mekh. Zhidk. Gaza, No. 1, 3–8 (1977).

  6. M. V. Turbin, Investigation of the initial boundary-value problem for the model of motion of a Herschel–Bulkley fluid, Vestn. Voronezhsk. Gos. Univ., Ser. Fiz. Mat., No. 2, 246–257 (2013).

  7. A. A. Gavrilov and V. Ya. Rudyak, Averaged molecular viscosity model for turbulent non-Newtonian fluid flows, Zh. Sib. Fed. Univ., Ser. Mat. Fiz., 7, No. 1, 46–57 (2014).

    Google Scholar 

  8. O. V. Matvienko, V. P. Bazuev, and N. K. Yuzhanova, Mathematical simulation of a twisted pseudoplastic fluid flow in a cylindrical channel, J. Eng. Phys. Thermophys., 84, No. 3, 589–593 (2011).

    Article  Google Scholar 

  9. O. V. Matvienko, V. P. Bazuev, and N. K. Yuzhanova, Mathematical simulation of the swirling flow of a dilatant liquid in a cylindrical channel, J. Eng. Phys. Thermophys., 87, No. 1, 200–207 (2014).

    Article  Google Scholar 

  10. O. V. Matvienko, V. P. Bazuev, and N. K. Dul′zon, Mathematical simulation of a swirling viscoplastic fluid flow in a cylindrical channel, J. Eng. Phys. Thermophys., 87, No. 5, 1177–1185 (2014).

    Article  Google Scholar 

  11. O. V. Matvienko, Numerical investigation into the flow of non-Newtonian fluids in a cylindrical channel, Izv. Vyssh. Uchebn. Zaved., Fizika, 57, No. 8/2, 183–189 (2014).

    Google Scholar 

  12. W. L. Wilkinson, Non-Newtonian Fluids. Fluid Mechanics. Mixing and Heat Transfer [Russian translation], Mir, Moscow (1964).

    MATH  Google Scholar 

  13. D. M. Klimov, A. G. Petrov, and D. V. Georgievskii, Viscoplastic Flows: Dynamic Chaos, Stability, and Mixing [in Russian], Nauka, Moscow (2005).

    Google Scholar 

  14. O. V. Matvienko, V. P. Bazuev, V. N. Venik, and N. G. Smirnova, Numerical investigation of Herschel-Bulkley fluids mixing, in: IOP Conference Series: Materials Science and Engineering Advanced Materials in Construction and Engineering, Ser. ″International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering, TSUAB 2014″ (2015), pp. 012034.

  15. O. V. Matvienko, M. V. Agafonsteva, and V. P. Bazuev, Investigation of the dynamics of a bubble in a swirling flow of a nonlinear viscous fluid, Vestn. Tomsk. Gos. Arkh.-Stroit. Univ., No. 4, 144–156 (2012).

  16. O. V. Matvienko and E. V. Evtyushkin, Mathematical study of hydrocyclone dispersed phase separation in clearing viscoplastic drilling fluids, J. Eng. Phys. Thermophys., 84, No. 2, 241–250 (2011).

    Article  Google Scholar 

  17. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1999).

    Google Scholar 

  18. O. V. Matvienko, V. P. Bazuev, N. G. Turkasova, and A. I. Baigulova, Investigation into the process of modification of bitumen in an injector mixer, Vestn. Tomsk. Gos. Arkh.-Stroit. Univ., No. 3, 202–213 (2013).

  19. A. A. Khalatov, Theory and Practice of Swirling Flows [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  20. A. Gupta, D. Lilly, and N. Saired, Twisted Flows [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  21. S. Patankar, Numerical Heat Transfer and Fluid Flow [Russian translation], Énergoatomizdat, Moscow (1983).

    Google Scholar 

  22. O. V. Matvienko, Heat transfer and formation of turbulence in an internal swirling fluid flow at low Reynolds numbers, J. Eng. Phys. Thermophys., 87, No. 4, 940–950 (2014).

    Article  Google Scholar 

  23. J. H. Ferziger and M. Perič, Computational Methods for Fluid Dynamics, Springer, Berlin (1996).

    Book  MATH  Google Scholar 

  24. V. Ya. Rudyak, A. V. Minakov, A. A. Gavrilov, and A. A. Dekterev, Application of a novel numerical algorithm of solution of Navier–Stokes equations to modeling of the operation of a physical-pendulum viscosimeter, Teplofiz. Aéromekh., 15, No. 5, 353–365 (2008).

    Google Scholar 

  25. B. Van Leer, Towards the ultimate conservative differencing scheme. IV. A new approach to numerical convection, J. Comput. Phys., 23, 276–299 (1977).

    Article  MATH  Google Scholar 

  26. A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357–393 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  27. J. P. Van Doormal and G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Transf., 7, 147–163 (1984).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 92, No. 1, pp. 215–226, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Bazuev, V.P. & Aseeva, A.E. Mathematical Modeling of Swirling Herschel–Bulkley Pseudoplastic Fluid Flow in a Cylindrical Channel. J Eng Phys Thermophy 92, 208–218 (2019). https://doi.org/10.1007/s10891-019-01923-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-019-01923-9

Keywords

Navigation