Skip to main content
Log in

Determination of the Temperature Dependence of the Isobaric Volumetric Expansion Coefficient for Certain Molecular Crystals of Nitro Compounds

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

This paper presents the form of the equations of state of molecular crystals of nitro compounds constructed on the basis of dividing Helmholtz free energy into an intramolecular and an intermolecular components. This division enabled us to determine the form of the Grüneisen equation for molecular crystals, the volume dependence of the Grüneisen coefficient, and the temperature dependence on the volumetric expansion coefficient. Comparative analysis of the calculated and experimental values of volumes of elementary cells of triaminotrinitrobenzene crystals depending on the temperature has shown their fair agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, Equations of state of Matter: from Ideal Gas to Quark-Gluon Plasma [in Russian], Fizmatlit, Moscow (2013).

    MATH  Google Scholar 

  2. K. V. Khishchenko and V. E. Fortov, Investigation of the equations of state of materials at a high energy concentration, Izv. Kabard.-Balkar. Gos. Univ., IV, No. 1, 6 −16 (2014).

    Google Scholar 

  3. A. V. Bushman and V. E. Fortov, Models of equation of state of matter, Usp. Fiz. Nauk, 140, No. 2, 177−232 (1983).

    Article  Google Scholar 

  4. A. I. Kitaigorodskii, Molecular Crystals [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  5. V. N. Zharkov and V. A. Kalinin, Equations of State at High Temperatures and Pressures [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  6. L. Zhirifalko, Statistical Physics of Solids [in Russian], Mir, Moscow (1975).

    Google Scholar 

  7. I. P. Bazarov, Thermodynamics [in Russian], Vysshaya Shkola, Moscow (1991).

    Google Scholar 

  8. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Fizmatlit, Moscow (2008).

    Google Scholar 

  9. Yu. M. Kovalev, Equations of state and the temperatures of shock compression of crystalline explosives, Fiz. Goreniya Vzryva, 20, No. 2, 102–107 (1984).

    Google Scholar 

  10. I. M. Voskoboinikov, A. N. Afanasenkov, and V. M. Bogomolov, Generalized shock adiabat of organic fl uids, Fiz. Goreniya Vzryva, 3, No. 4, 585–593 (1967).

    Google Scholar 

  11. P. J. Miller, S. Block, and G. J. Piermarini, Effect of pressure on the vibration spectra of liquid nitromethane. J. Phys. Chem., 93, 462–466 (1989).

    Article  Google Scholar 

  12. K. V. Khishchenko, I. V. Lomonosov, V. E. Fortov, and O. F. Shlenskii, Thermodynamic properties of plastics in a wide range of densities and temperatures, Dokl. Akad. Nauk, 349, No. 3, 322−325 (1996).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshits, Statistical Physics, Pt. 1 [in Russian], Fizmatlit, Mosow (2002).

  14. Yu. M. Kovalev, Determination of the form of Grüneisen coeffi cient for molecular crystals, Dokl. Akad. Nauk, 403, No. 4, 475−477 (2005).

    MATH  Google Scholar 

  15. Yu. M. Kovalev, Grüneisen function for solid explosives, Vopr. Atom. Nauki Tekh., Ser. Mat. Modelir. Fiz. Protsessov, No. 2, 55 −59 (2005).

    Google Scholar 

  16. A. M. Molodets, Grüneisen function and zero isotherm of three metals up to pressures of 10 GPa, Zh. Éksp. Teor. Fiz., 107, No. 3, 824–831 (1995).

    Google Scholar 

  17. A. M. Molodets, Grüneisen function determined on the basis of the laws governing shock-wave compression of monolithic material, Dokl. Akad. Nauk, 341, No. 6, 753−754 (1995).

    Google Scholar 

  18. V. G. Shchetinin, Calculation of the heat capacity of organic substances in shock and detonation waves, Khim. Fiz., 18, No. 5, 90–95 (1999).

    Google Scholar 

  19. Yu. M. Kovalev, Analysis of some approximations for describing the thermal part of the equations of state of molecular crystals, Vestn. Yuzhn.-Uralsk. Gos. Univ., Ser. Mat., Mekh., Fiz., 9, No. 1, 49−56 (2017).

    Google Scholar 

  20. Yu. M. Kovalev and O. A. Shershneva, Modeling of the thermal component of the equations of state of molecular crystals, Vestn. Yuzhn.-Uralsk. Gos. Univ., Ser. Mat., Mekh., Fiz., 9, No. 4, 43−51 (2017).

    Google Scholar 

  21. Yu. M. Kovalev and V. F. Kuropatenko, Determination of the temperature dependence of heat capacity for some molecular crystals of nitro compounds, J. Eng. Phys. Thermophys., 91, No. 2, 278−287 (2018).

    Article  Google Scholar 

  22. B. M. Dobrats and P. C. Crawford, LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore, California (1985).

    Google Scholar 

  23. A. V. Stankevich, E. B. Smirnov, O. V. Kostitsyn, K. A. Tén, A. N. Shmakov, and B. P. Tolochko, Anisotropic thermal expansion of the molecular crystal of 1,3,5-triamine 2,4,6-trinitrobenzene at a normal pressure, Abstracts of papers presented at the school-seminar “Use of Synchrotron and Terahertz Radiation for Studying High-Energy Materials, 15−20 September 2015, Novosibirsk (2015), pp. 46−49.

  24. B. W. Olinger and H. H. Cady, Hydrostatic compression of explosives and detonation products to 10 GPa (100 kbars) and their calculated shock compression results for PETN, TATB, CO2, and H2O, in: Detonation and Explosives [Russian translation], Mir, Moscow (1981), pp. 203−219.

    Google Scholar 

  25. T. Clark, A Handbook of Computational Chemistry [Russian translation], Mir, Moscow (1990).

    Google Scholar 

  26. N. F. Stepanov and Yu. V. Novakovskaya, Quantum chemistry today, Ross. Khim. Zh., LI, No. 5, 5–17 (2007).

    Google Scholar 

  27. T. R. Gibbs and A. Popolato, Last Explosive Property Data. Los Alamos Series on Dynamic Material Properties, Berkeley, University of California Press, Los Angeles, London (1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Kovalev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 6, pp. 1653–1663, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, Y.M. Determination of the Temperature Dependence of the Isobaric Volumetric Expansion Coefficient for Certain Molecular Crystals of Nitro Compounds. J Eng Phys Thermophy 91, 1573–1582 (2018). https://doi.org/10.1007/s10891-018-1895-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1895-8

Keywords

Navigation