Skip to main content
Log in

Simulation of the Internal Structure of a Tandem-Type Plasmatron

  • TRANSFER PROCESSES IN LOW-TEMPERATURE PLASMA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Numerical simulation of a tandem-type plasmatron intended for supersonic plasma spraying of metallic and ceramic materials at atmospheric pressure has been carried out. The calculation results are compared with experimental data. The internal gas dynamics of the plasmatron and the interaction of a plasma stream with spray particles are presented in the form of distributions of the main thermal and kinetic characteristics of stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fauchais, J. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals from Powder to Part, Springer (2013).

  2. P. Fauchais, M. Vardelle, and A. Vardelle, Reliability of plasma-sprayed coatings: monitoring the plasma spray process and improving the quality of coatings, J. Phys. D: Appl. Phys., 46, No. 16, 224016 (2013).

    Article  Google Scholar 

  3. P. Fauchais and G. Montavon, Plasma spraying: from plasma generation to coating structure, Adv. Heat Transf., 40, 205–344 (2007).

    Article  Google Scholar 

  4. M. Vardelle, A. Vardelle, P. Fauchais, and I. Saray, Comparison of classical and axial injection torches for spraying alumina coatings, Mater. Manuf. Process., 9, 735–755 (1994).

    Article  Google Scholar 

  5. P. Mohanty, Jovan Stanisic, Jelena Stanisic, A. George, and Y. A. Wang, Study on arc instability phenomena of an axial injection cathode plasma torch, J. Therm. Spray Technol., 19, 465–475 (2010).

    Article  Google Scholar 

  6. A. Vardelle, C. Moreau, N. J. Themelis, and C. Chazelas, A perspective on plasma spray technology, Plasma Chem. Plasma Process., 35, 491–509 (2015).

    Article  Google Scholar 

  7. Novel Solutions to Complex Coatings and Materials Challenges; http://www.mettech.com.

  8. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology, Elsevier Sci. (2006).

  9. T. H. Van Steenkiste, J. R. Smith, R. E. Teets, J. J. Moleski, D. W. Gorkiewicz, R. P. Tison, D. R. Marantz, K. A. Kowalsky, W. L. Riggs, P. H. Zajchowski, B. Pilsner, R. C. McCune, and K. J. Barnett, Kinetic spray coatings, Surf. Coat. Technol., 111, 62–71 (1999).

    Article  Google Scholar 

  10. F. R. Caliari, F. S. Miranda, D. A. P. Reis, G. P. Filho, L. I. Charakhovski, and A. M. Essiptchouk, New kind of plasma torch for supersonic coatings at atmospheric pressure, Proc. 22nd Int. Symp. on Plasma Chemistry, 5–10 July 2015, Antwerp (2015).

  11. F. R. Caliari, F. S. Miranda, D. A. P. Reis, G. P. Filho, L. I. Charakhovski, and A. M. Essiptchouk, Plasma torch for supersonic plasma spray at atmospheric pressure, J. Mater. Process. Technol ., 237, 351–360 (2016).

    Article  Google Scholar 

  12. SolidWorks Flow Simulation, Tech. ref. Dassault Systemes (2014).

  13. M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas Fundamentals and Applications, Springer (1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Essiptchouk.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 6, pp. 1628–1636, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essiptchouk, A., Charakhovski, L. Simulation of the Internal Structure of a Tandem-Type Plasmatron. J Eng Phys Thermophy 91, 1550–1557 (2018). https://doi.org/10.1007/s10891-018-1892-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1892-y

Keywords

Navigation