Skip to main content
Log in

Gravity Sedimentation-Induced Deformation of a Droplet Under Conditions of Blowing-Over by an Incoming Air Stream

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The results are presented of experimental investigation of the loss of the viscous droplet shape stability in the course of gravity sedimentation of droplet under conditions of blowing-over by an incoming stream at low Weber numbers (We < 7). A new scheme of a setup for studying the droplet deformation by aerodynamic forces is suggested, with the aid of which a qualitative picture of droplet deformation and an empirical dependence of the degree of deformation on the Weber number have been obtained in the range of Reynolds numbers Re = 490–2070.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Pt. 2, Nauka, Moscow (1987).

  2. R. Clift, J. R. Grase, and M. E. Weber, Bubbles, Drops and Particles, Academic Press, New York (1978).

    Google Scholar 

  3. S. Sou, Hydrodynamics of Multiphase Systems [Russian translation], Pt. 1, Mir, Moscow (1971).

  4. S. Sou, Hydrodynamics of Multiphase Systems [Russian translation], Pt. 2, Mir, Moscow (1971).

  5. A. I. Ivandaev, A. G. Kutushev, and R. I. Nigmatulin, Gas dynamics of multiphase media. Shock and detonation waves in gas suspensions, in: Results of Science and Technology. Mechanics of Liquids and Gases [in Russian], Vol. 16, VINITI, Moscow (1982), pp. 209−290.

  6. A. L. Gonor and V. Ya. Rivkind, Droplet dynamics, in: Results of Science and Technology. Mechanics of Liquids and Gases [in Russian], Vol. 17, VINITI, Moscow (1982), pp. 86−159.

  7. A. A. Shraiber, Multiphase polydisperse fl ows with variable fractional composition of discrete inclusions, in: Results of Science and Technology. Complex and Special Sections of Mechanics [in Russian], VINITI, Moscow (1988).

  8. L. E. Sternin and A. A. Shraiber, Multiphase Flows of Particle-Laden Gas [in Russian], Vol. 3, Mashinostroenie, Moscow (1994), pp. 3−71.

  9. A. K. Flock, D. R. Guildenbecher, J. Chen, P. E. Sojka, and H.-J. Bauer, Experimental statistics of droplet trajectory and air fl ow during aerodynamic fragmentation of liquid drops, Int. J. Multiphase Flow, 47, 37−49 (2012).

  10. J. Gao, D. R. Guildenbecher, P. L. Reu, V. Kulkarni, P. E. Sojka, and J. Chen, Quantitative, three-dimensional diagnostics of multiphase drop fragmentation via digital in-line holography, Opt. Lett., 38, No. 11, 1893−1895 (2013).

    Article  Google Scholar 

  11. V. Kulkarni and P. E. Sojka, Bag breakup of low viscosity drops in the presence of a continuous air jet, Phys. Fluids, 26, Issue 7, 072103 (2014).

  12. D. V. Antonov, R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Infl uence of the temperature of gases on the deformation characteristics of moving water droplets, J. Eng. Phys. Thermophys., 88, No. 4, 797−805 (2015).

    Article  Google Scholar 

  13. C. Wang, S. Chang, H. Wu, and J. Xu, Modeling of drop breakup in the bag breakup regime, Appl. Phys. Lett., 104, 154107 (2014).

  14. K. Kelemen, S. Gepperth, R. Koch, H.-J. Bauer, and H. P. Schuchmann, On the visualization of droplet deformation and breakup during high-pressure homogenization, Microfl uid Nanofl uid, 19, 1139−1158 (2015).

  15. R. S. Volkov, A. O. Zhdanova, O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Mechanism of liquid drop deformation in subsonic motion in a gaseous medium, J. Eng. Phys. Thermophys., 87, No. 6, 1351−1361 (2014).

    Article  Google Scholar 

  16. R. S. Volkov, M. V. Zabelin, and P. A. Strizhak, On the laws of liquid drop deformation in gas fl ows, Chem. Petrol. Eng., 52, 85−89 (2016).

  17. V. A. Arkhipov, S. A. Basalaev, K. G. Perfi l′eva, S. N. Polenchuk, A. S. Usanina, and G. R. Shrager, Stand for Investigating Deformation of Droplet by Aerodynamic Forces, Application No. 2016149916 with priority of 19.12.2016 for RF Patent B01L 99/00.

  18. V. A. Arkhipov, A. S. Usanina, V. F. Trofi mov, and I. M. Vasenin, Stability of the shape of particles of disperse phase at low Reynolds numbers, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 5−14 (2013).

  19. A. Adamson, Physical Chemistry of Surfaces [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  20. V. M. Plotnikov, V. A. Podreshetnikov, and L. N. Teterevyatnikov, Devices and Means of Accounting for Natural Gas and Condensate [in Russian], Nedra, Leningrad (1989).

    Google Scholar 

  21. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow (1991).

  22. V. G. Butov, I. M. Vasenin, and G. R. Shrager, Deformation of a droplet in a viscous fl ow and conditions for existence of its equilibrium shape, Prikl. Mat. Mekh., No. 6, 1045−1049 (1982).

  23. I. M. Vasenin, V. A. Arkhipov, V. G. Butov, A. A. Glazunov, and V. F. Trofi mov, Gas Dynamics of Two-Phase Flows in Nozzles [in Russian], Izd. Tomsk. Univ., Tomsk (1986).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 6, pp. 1583–1591, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonnikova, A., Arkhipov, V.A., Basalaev, S.A. et al. Gravity Sedimentation-Induced Deformation of a Droplet Under Conditions of Blowing-Over by an Incoming Air Stream. J Eng Phys Thermophy 91, 1505–1513 (2018). https://doi.org/10.1007/s10891-018-1886-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1886-9

Keywords

Navigation