Features of Extrusion Processing of Ultrahigh Molecular Weight Polyethylene. Experiment and Theory

  • O. I. Skul′skii
  • E. V. Slavnov

Experimental studies have been made of the permissible regimes of processing ultrahigh molecular weight polyethylene GUR 2122 with molecular mass of 4.5 million g/moles in a laboratory extruder with an auger diameter 32 mm and a ratio L/D = 20 at temperatures of 155–165oC. On the basis of rotational viscometry, the rheological properties of the melt are described. A mathematical model and a numerical method for calculating the motion of ultrahigh molecular weight polyethylene melt in the auger and in the moulding rigging are proposed. The velocity and stress fields have been determined.


ultrahigh molecular weight polyethylene extrusion mathematical model finite element method velocities stresses working points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. N. Andreeva, E. V. Veselovskaya, E. I. Nalivaiko, et al., Ultrahigh Molecular Weight High-Density Polyethylene [in Russian], Khimiya, Leningrad (1982).Google Scholar
  2. 2.
    K. Salovey and X. Y. Wang, Melting of ultrahigh molecular weight polyethylene, Am. Chem. Soc. Polym. Prepr., 27, No. 2, 172 (1986).Google Scholar
  3. 3.
    M. Kresteva, E. Nedkov, and A. Radilova, Melting of nascent and thermally treated super-high molecular weight polyethylene, Colloid Polym. Sci., No. 263, 273−279 (1985).Google Scholar
  4. 4.
    Meiju Xie and Huilin Li, Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: Effect of blending with polypropylene and poly(ethylene glycol), Eur. Polym. J., No. 43, 3480–3487 (2007).Google Scholar
  5. 5.
    A. J. Waddon and A. Keller, A temperature window of extrudability and reduced flow resistance in high-molecular-weight polyethylene. Interpretation in terms of flow-induced mobile hexagonal phase, J. Polym. Sci., Part B: Polym. Phys., No. 28, 1063–1073 (1990).Google Scholar
  6. 6.
    J. W. H. Kolnaar and A. Keller, A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology: 1. The basic effect and principal parameters, Polymer, No. 35, 3863–3874 (1994).Google Scholar
  7. 7.
    J. W. H. Kolnaar and A. Keller, A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology: 2. Rheological investigations in the extrusion window, Polymer, No. 36, 821–836 (1995).Google Scholar
  8. 8.
    J. W. H. Kolnaar and A. Keller, A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology: 3. Implications for flow instabilities and extrudate distortion, Polymer, No. 38, 1817–1833 (1997).Google Scholar
  9. 9.
    S. N. Aristov and O. I. Skul’skij, Exact solution of the problem of flow of a polymer solution in a plane channel, J. Appl. Mech. Tech. Phys., 76, No. 3, 88–95 (2003).zbMATHGoogle Scholar
  10. 10.
    S. Rastogi, L. Kurelec, and P. J. Lemstra, Chain mobility in polymer systems: On the borderline between solid and melt. Crystal size influence in phase transition and sintering of ultrahigh molecular weight polyethylene via the mobile hexagonal phase, Macromolecules, No. 31, 5022–5031 (1998).Google Scholar
  11. 11.
  12. 12.
    E. V. Slavnov, A. I. Sudakov, E. V. Pepelyaeva, V. P. Korobov, and M. A. Trutnev, A Method of Determining the Dependence of the Food Value of Bioproduct on Parameters of the Physicomechanical Effect on It and Facility, RF Patent No. 2408883, G01 N 33/02, published 10.01.2011, Byull. No. 1.Google Scholar
  13. 13.
    A. Ya. Malkin and A. I. Isaev, Rheology: Concepts, Methods, Applications [in Russian], Professiya, St. Petersburg (2007).Google Scholar
  14. 14.
    Yu. L. Kuznetsova, O. I. Skul′skii, and G. V. Pyshnograi, Nonlinear viscoelastic liquid flow in a plane channel under the action of a given pressure gradient, Vychisl. Mekh. Sploshn. Sred, 1, No. 2, 55−69 (2010).Google Scholar
  15. 15.
    J. L. Kuznetsova and O. I. Skul′skiy, Verification of mesoscopic models of viscoelastic fluids with a non-monotonic flow curve, Korea-Austr. Rheol. J., 28, No. 1, 33−40 (2016).CrossRefGoogle Scholar
  16. 16.
    Yu. L. Kuznetsova and O. I. Skul′skii, Nonlinear viscoelastic liquid shear flow, Vestn. Permsk. Univ. "Mat., Mekh., Inform.," No. 4 (8), 18−27 (2011).Google Scholar
  17. 17.
    O. I. Skul′skii and Yu. L. Kuznetsova, Rheological models of polymer solutions, Sb. Nauch. Tr. Permsk. Gos. Tekh. Univ. "Mat. Modelir. Sist. Prots.," No. 14, 178−188 (2006).Google Scholar
  18. 18.
    Y. L. Kuznetsova and O. I. Skul′skiy, Effect of macromolecular entanglement on the simple shear flow of viscoelastic fluid, Comp. Continuum Mech., 6, No. 2, 224−231 (2013).CrossRefGoogle Scholar
  19. 19.
    O. V. Savenkova, O. I. Skul’skiy, and Ye. V. Slavnov, Thermal modes existing in screw extruder for thermoplastic materials, Fluid Mech. Sov. Res., 16, No. 3, 128–133 (1987).Google Scholar
  20. 20.
    O. I. Skul′skiy, Numerical solution problems of highly concentrated rod-like macromolecules, Int. J. Polym. Mater., No. 27, 67−75 (1994).Google Scholar
  21. 21.
    O. I. Skul′skiy, Numerical modeling of single-screw extruders, Int. Polym. Sci. Technol., 25, No. 4, 91−95 (1998).Google Scholar
  22. 22.
    K. Rauvendal, Polymer Extrusion [Russian translation], Professiya, St. Petersburg (2006).Google Scholar
  23. 23.
    O. I. Skul’skiy and Y. V. Slavnov, Moisture diffusion in extrusive processing of damp grain, Vychisl. Mekh. Sploshn. Sred, 1, No. 2, 74−81 (2008).Google Scholar
  24. 24.
    O. I. Skul’skiy, Quasi-three-dimensional model of polymer flows in С-shaped chamber for twin-screw extruders with closely intermeshing screws, Res. Rev. Polym., RRPL, 6, No. 4, 140−147 (2015).Google Scholar
  25. 25.
    Morton M. Denn, Extrusion instabilities and wall slip, Annu. Rev. Fluid Mech., 33, 265–287 (2001).CrossRefzbMATHGoogle Scholar
  26. 26.
    O. I. Skul’skiy, A. V. Fonarev, and Yu. L. Kuznetsova, Patent Carrying Official Registration of Computer Program "FEM FLOW" under No. 2007611760 of 25.04.2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Continuum Mechanics, Urals Branch of the Russian Academy of SciencesPerm′Russia

Personalised recommendations