Experimental Assessment of the Mass of Ash Residue During the Burning of Droplets of a Composite Liquid Fuel

  • D. O. Glushkov
  • A. V. Zakharevich
  • P. A. Strizhak
  • S. V. Syrodoi
Article
  • 16 Downloads

An experimental study has been made of the regularities of burning of single droplets of typical compositions of a composite liquid fuel during the heating by an air flow with a varied temperature (600–900 K). As the basic components of the compositions of the composite liquid fuel, use was made of the: waste of processing (filter cakes) of bituminous coals of ranks K, C, and T, waste motor, turbine, and transformer oils, process mixture of mazut and oil, heavy crude, and plasticizer. The weight fraction of a liquid combustible component (petroleum) product) ranged within 0–15%. Consideration has been given to droplets of a composite liquid fuel with dimensions (radius) of 0.5 to 2 mm. Conditions of low-temperature initiation of combustion to ensure a minimum possible mass of solid incombustible residue have been determined. Petroleum products have been singled out whose addition to the composition of the composite liquid fuel tends to increase the ash mass (compared to the corresponding composition without a liquid combustible component). Approximation dependences have been obtained which permit predicting the influence of the concentration of the liquid petroleum product as part of the composite liquid fuel on the ash-residue mass.

Keywords

composite liquid fuel coal-processing waste waste petroleum products low-temperature ignition ash 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. R. Vedruchenko, On the dynamics of transformation of droplets in the flame of a water–mazut emulsion as a fuel for boiler units, Teploénergetika, No. 2, 57–60 (2000).Google Scholar
  2. 2.
    E. M. Puzyrev, V. I. Murko, and Zvyagin, Results of experimental-industrial trials of operation of a DKVR 6.5/13 oil-fired boiler burning water–coal fuel, Teploénergetika, No. 2, 69–71 (2001).Google Scholar
  3. 3.
    V. I. Murko, Influence of plasticizer reactants on the rheological properties of water–coal fuel, Khim. Tverd. Topliva, No. 2, 62–72 (2001).Google Scholar
  4. 4.
    V. I. Murko, V. V. Sleptsov, and I. Kh. Nekhoroshii, Experience of operation of a boiler of steam-generating capacity 220 t/h burning water–coal fuel in China, Teploénergetika, No. 3, 76–77 (2003).Google Scholar
  5. 5.
    M. P. Baranova and B. N. Kuznetsov, Influence of the moisture content of brown coal on the properties of high-concentration water–coal suspensions, Khim. Tverd. Topliva, No. 6, 20–26 (2003).Google Scholar
  6. 6.
    G. S. Khodakov, E. G. Gorlov, and G. S. Golovin, Production and piping of a suspension water–coal fuel, Khim. Tverd. Topliva, No. 4, 22–39 (2006).Google Scholar
  7. 7.
    G. S. Khodakov, Water–coal suspensions in the power industry, Teploénergetika, No. 1, 35–45 (2007).Google Scholar
  8. 8.
    K. N. Trubetskoi, V. E. Zaidenvarg, and A. S. Kondrat′ev, Water–coal fuel: results of development and prospects for using in Russia, Teploénergetika, No. 5, 49–52 (2008).Google Scholar
  9. 9.
    D. A. Svishchev and A. V. Keiko, Thermodynamic analysis of the regimes of entrained-flow gasification of water–coal fuel, Teploénergetika, No. 6, 33–36 (2010).Google Scholar
  10. 10.
    G. R. Mingaleeva, D. V. Ermolaev, O. V. Afanas′eva, and S. S. Timofeeva, Experimental study of the viscosity of a water–coal suspension with a bifractional composition of a dispersed phase, Teploénergetika, No. 6, 28–30 (2012).Google Scholar
  11. 11.
    V. A. Borodulya, É. K. Buchilko, and L. M. Vinogradov, Features of fluidized-bed burning of a water–coal fuel from Belarusian brown coals, Teploénergetika, No. 7, 36–41 (2014).Google Scholar
  12. 12.
    A. Kijo-Kleczkowska, Combustion of coal–water suspensions, Fuel, 90, No. 2, 865–877 (2011).CrossRefGoogle Scholar
  13. 13.
    A. P. Burdukov, V. I. Popov, M. Yu. Chernetskiy, A. A. Dekterev, and K. Hanjalic, Mechanical activation of micronized coal: Prospects for new combustion applications, Appl. Therm. Eng., 74, 174–181 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Belošević, I. Tomanović, V. Beljanski, D. Tucaković, and T. Živanović, Numerical prediction of processes for clean and efficient combustion of pulverized coal in power plants, Appl. Therm. Eng., 74, 102–110 (2015).CrossRefGoogle Scholar
  15. 15.
    N. I. Red′kina, G. S. Khodakov, and E. G. Gorlov, Suspension coal fuel for internal combustion engines, Khim. Tverd. Topliva, No. 5, 54–61 (2013).Google Scholar
  16. 16.
    G. S. Khodakov, E. G. Gorlov, and G. S. Golovin, Suspension coal fuel, Khim. Tverd. Topliva, No. 6, 15–32 (2005).Google Scholar
  17. 17.
    I. I. Lishtvan, P. L. Falyushin, E. A. Smolyachkova, and S. I. Kovrik, Fuel suspensions based on mazut, peat, wood waste, and charcoal, Khim. Tverd. Topliva, No. 1, 3–7 (2009).Google Scholar
  18. 18.
    E. G. Gorlov, Composite water-containing fuels from coals and petroleum products, Khim. Tverd. Topliva, No. 6, 50–61 (2004).Google Scholar
  19. 19.
    Yu. F. Patrakov, N. I. Fedorova, and A. I. Efremov, Composite water-containing fuel from Kuzbass low-rank coals, Vestn. Kuzbassk. Gos. Tekhn. Univ., No. 3, 81–83 (2006).Google Scholar
  20. 20.
    E. G. Gorlov, A. I. Seregin, and G. S. Khodakov, Conditions for the sale of sludges of coal-mining and coal-processing enterprises in the form of a suspension fuel, Khim. Tverd. Topliva, No. 6, 51–57 (2007).Google Scholar
  21. 21.
    A. I. Tsepenok, Yu. V. Ovchinnikov, and Yu. V. Strizhko, Investigation of the processes of combustion of artificial composite liquid fuel in a cyclone primary furnace, Énergetik, No. 7, 45–47 (2011).Google Scholar
  22. 22.
    Yu. V. Ovchinnikov, A. I. Tsepenok, A. V. Shikhotinov, and E. V. Tatarnikova, Investigation of the ignition of solid fuels and ICLFs, Dokl. Akad. Nauk Vyssh. Shkoly Ross. Feder., No. 2, 117–126 (2011).Google Scholar
  23. 23.
    L. K. Gusachenko, V. E. Zarko, V. Ya. Zar′yanov, and V. P. Bobyshev, Simulation of the Processes of Combustion of Solid Fuels [in Russian], Nauka, Novosibirsk (1985).Google Scholar
  24. 24.
    K. Hanjalic, A. Lekic, and R. Krol, Sustainable Energy Technologies: Options and Prospects, Springer, Dordrecht (2008).CrossRefGoogle Scholar
  25. 25.
    D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, "Low-temperature" firing of a coal particle in an air flow, Khim. Fiz., 34, No. 3, 48–56 (2015).Google Scholar
  26. 26.
    D. O. Glushkov, P. A. Strizhak, and O. V. Vysokomornaya, Numerical research of heat and mass transfer during low-temperature ignition of a coal particle, Therm. Sci., 19, No. 1, 285–294 (2015).CrossRefGoogle Scholar
  27. 27.
    K. Yu. Vershinina, D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental study of the ignition of single drops of coal suspensions and coal particles in the oxidizer flow, J. Eng. Phys. Thermophys., 90, No. 1, 198–205 (2017).CrossRefGoogle Scholar
  28. 28.
    R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Experimental determination of the dimensions of water-flow droplets entrained by high-temperature gases, Teploénergetika, No. 8, 50–56 (2015).Google Scholar
  29. 29.
    R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Experimental investigation of mixtures and foreign inclusions in water droplets influence on integral characteristics of their evaporation during motion through high-temperature gas area, Int. J. Therm. Sci., 88, 193–200 (2015).CrossRefGoogle Scholar
  30. 30.
    J. Janiszewski, Measurement procedure of ring motion with the use of high speed camera during electromagnetic expansion, Metrol. Meas. Syst., 19, No. 4, 797–804 (2012).CrossRefGoogle Scholar
  31. 31.
    J. Janiszewski, Ductility of selected metals under electromagnetic ring test loading conditions, Int. J. Solids Struct., 49, Nos. 7–8, 1001–1008 (2012).Google Scholar
  32. 32.
    G. V. Kuznetsov, P. A. Kuibin, and P. A. Strizhak, Assessment of numerical values of the evaporation constants of water droplets moving in a flow of high-temperature gases, Teplofiz. Vys. Temp., 53, No. 2, 264–269 (2015).Google Scholar
  33. 33.
    O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Predictive determination of the integral characteristics of evaporation of water droplets in gas media with a varying temperature, J. Eng. Phys. Thermophys., 90, No. 3, 615–624 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. O. Glushkov
    • 1
  • A. V. Zakharevich
    • 1
  • P. A. Strizhak
    • 1
  • S. V. Syrodoi
    • 1
  1. 1.National Research Tomsk Polytechnic University, Institute of Power EngineeringTomskRussia

Personalised recommendations