Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas–Dust Layer

  • V. S. Surov

Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.


dust-laden gas hyperbolic models of gas suspension Godunov′s method mathematical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Fedorov, Mixture formation in propagation of wave processes in gas suspensions, Fiz. Goreniya Vzryva, 40, No. 1, 21–37 (2004).Google Scholar
  2. 2.
    A. V. Fedorov, N. N. Fedorova, I. A. Fedorchenko, and V. M. Fomin, Mathematical simulation of dust rise from a surface, Prikl. Mekh. Tekh. Fiz., 46, No. 6, 113–125 (2002).zbMATHGoogle Scholar
  3. 3.
    A. V. Fedorov and I. A. Fedorchenko, Calculation of dust rise behind a shock wave sliding along the layer. Verification of the model, Fiz. Goreniya Vzryva, 41, No. 3, 110–120 (2005).Google Scholar
  4. 4.
    A. V. Fedorov, Yu. V. Kharlamova, and T. A. Khmel′, Reflection of a shock wave in a dust cloud, Fiz. Goreniya Vzryva, 43, No. 1, 121–131 (2007).Google Scholar
  5. 5.
    A. V. Fedorov and T. A. Khmel′, Interaction of a shock wave with a cloud of aluminum particles in a channel, Fiz. Goreniya Vzryva, 38, No. 2, 89–98 (2002).Google Scholar
  6. 6.
    A. V. Fedorov and I. A. Fedorchenko, Numerical simulation of a shock wave propagation in a mixture of a gas with solid particles, Fiz. Goreniya Vzryva, 46, No. 5, 97–107 (2010).Google Scholar
  7. 7.
    R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Pt. 1, Nauka, Moscow (1987).Google Scholar
  8. 8.
    V. S. Surov, On equations of a one-velocity heterogeneous medium, J. Eng. Phys. Thermophys., 82, No. 1, 75–84 (2009).CrossRefGoogle Scholar
  9. 9.
    V. S. Surov, Account of interfractional heat transfer in a hyperbolic model of a one-velocity heterogeneous mixture, J. Eng. Phys. Thermophys., 90, No. 3, 575–585 (2017).MathSciNetCrossRefGoogle Scholar
  10. 10.
    V. S. Surov, Hyperbolic models in the mechanics of heterogeneous media, Zh. Vychisl. Mat. Mat. Fiz., 54, No. 1, 139–149 (2014).MathSciNetzbMATHGoogle Scholar
  11. 11.
    V. S. Surov, Latent waves in heterogeneous media, J. Eng. Phys. Thermophys., 87, No. 6, 1463–1468 (2014).CrossRefGoogle Scholar
  12. 12.
    A. A. Gubaidullin, D. N. Dudko, and S. F. Urmancheev, Effect of air shock waves on barriers covered with a porous layer, Vychisl. Tekhnol., 6, No. 3, 7–20 (2001).zbMATHGoogle Scholar
  13. 13.
    D. L. Nguyen, E. R. F. Winter, and M. Greiner, Sonic velocity in two-phase systems, Int. J. Multiphase Flow, 7, 311–320 (1981).CrossRefGoogle Scholar
  14. 14.
    G. B. Wallis, One-Dimensional Two-Phase Flow [Russian translation], Mir, Moscow (1972).Google Scholar
  15. 15.
    S.-J. Lee, K.-S. Chang, and K. Kim, Pressure wave speeds from the characteristics of two fluids, two-phase hyperbolic equation systems, Int. J. Multiphase Flow, 24, 855–866 (1998).CrossRefGoogle Scholar
  16. 16.
    S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P Prokopov, Numerical Solution of Multidimensional and Gas-Dynamical Problems [in Russian], Nauka, Moscow (1976).Google Scholar
  17. 17.
    E. F. Toro, Riemann solvers with evolved initial condition, Int. J. Numer. Methods Fluids, 52, 433–453 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    V. S. Surov, Godunov method for calculating multicomponent heterogeneous medium flows, J. Eng. Phys. Thermophys., 87, No. 2, 367–375 (2014).CrossRefGoogle Scholar
  19. 19.
    V. S. Surov, On a method of approximate solution of the Riemann problem for a one-velocity of a multicomponent mixture, J. Eng. Phys. Thermophys., 83, No. 2, 373–379 (2010).CrossRefGoogle Scholar
  20. 20.
    V. S. Surov, Interaction of shock waves with bubble liquid droplets, Zh. Tekh. Fiz., 71, No. 6, 17–22 (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.South-Ural State University (National Research University)ChelyabinskRussia

Personalised recommendations