Skip to main content
Log in

Assessment of Thermal Performance of Functionally Graded Materials in Longitudinal Fins

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Assessment of the thermal characteristics of materials in heat exchangers with longitudinal fins is performed in the case where a conventional homogeneous material of a longitudinal fin is replaced by a functionally graded one, in which the fin material properties, such as the conductivity, are assumed to be graded as linear and power-law functions along the normal axis from the fin base to the fin tip. The resulting equations are calculated under two (Dirichlet and Neumann) boundary conditions. The equations are solved by an approximate analytical method with the use of the mean value theorem. The results show that the inhomogeneity index of a functionally graded material plays an important role for the thermal energy characteristics in such heat exchangers. In addition, it is observed that the use of such a material in longitudinal fins enhances the rate of heat transfer between the fin surface and surrounding fluid. Hopefully, the results obtained in the study will arouse interest of designers in heat exchange industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Mon and U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transf., 47, 1953–1964 (2004).

    Article  Google Scholar 

  2. R. O. Popovych, C. Sophocleous, and O. O. Vaneeva, Exact solutions of a remarkable fin equation, Appl. Math. Lett., 21, 209–214 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Harley and R. J. Moitsheki, Numerical investigation of the temperature profile in a rectangular longitudinal fin, Nonlinear Anal. Real World Appl., 13, 2343–2351 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Arslanturk, Performance analysis and optimization of a thermally non-symmetric annular fin, Int. Commun. Heat Mass Transf., 31, 1143–1153 (2004).

    Article  Google Scholar 

  5. B. Kundu and P. K. Das, Performance analysis and optimization of elliptic fins circumscribing a circular tube, Int. J. Heat Mass Transf., 50, 173–180 (2007).

    Article  MATH  Google Scholar 

  6. E. Martinez, W. Vicente, G. Soto, A. Campo, and M. Salinas, Methodology for determining the optimal fin dimensions in helically segmented finned tubes, Appl. Therm. Eng., 31, 1744–1750 (2011).

    Article  Google Scholar 

  7. R. J. Moitsheki, Steady one-dimensional heat flow in a longitudinal triangular and parabolic fin, Commun. Nonlinear Sci. Numer. Simul., 16, 3971–3980 (2011).

    Article  MATH  Google Scholar 

  8. A. Campo and S. Chikh, Reproduction of the fin efficiency diagram for annular fins of uniform thickness by solving systems of up to four algebraic equations, Int. J. Mech. Eng. Educ., 34, 85–92 (2006).

    Article  Google Scholar 

  9. C. Y. Cheng and C. K. Chen, Transient response of annular fins subjected to constant base temperatures, Int. Commun. Heat Mass Transf., 25, 775–785 (1998).

    Article  Google Scholar 

  10. E. M. A. Mokheimer, Performance of annular fins with different profiles subject to variable heat transfer coefficient, Int. J. Heat Mass Transf., 45, 3631–3642 (2002).

    Article  MATH  Google Scholar 

  11. R. J. Moitsheki, Steady heat transfer through a radial fin with rectangular and hyperbolic profiles, Nonlinear Anal. Real World Appl., 12, 867–874 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. H. Sharqawy, A. Moinuddin, and S. M. Zubair, Heat and mass transfer from annular fins of different cross-sectional area, Part I. Temperature distribution and fin efficiency, Int. J. Refrig., 35, 365–376 (2012).

    Article  Google Scholar 

  13. A. Moinuddin, M. H. Sharqawy, and S. M. Zubair, Heat and mass transfer from annular fins of different cross-sectional area, Part II. Optimal dimensions of fins, Int. J. Refrig., 35, 377–385 (2012).

    Article  Google Scholar 

  14. C. Y. Lai, H. S. Kou, and J. J. Lee, Recursive formulation on thermal analysis of an annular fin with variable thermal properties, Appl. Therm. Eng., 29, 779–786 (2009).

    Article  Google Scholar 

  15. R. J. Moitsheki, T. Hayat, and M. Y. Malik, Some exact solutions of the fin problem with a power law temperaturedependent thermal conductivity, Nonlinear Anal. Real World Appl., 11, 3287–3294 (2011).

    Article  MATH  Google Scholar 

  16. H. S. Kou, J. J. Lee, and C. Y. Lai, Thermal analysis of a longitudinal fin with variable thermal properties by recursive formulation, Int. J. Heat Mass Transf., 48, 2266–2277 (2005).

    Article  MATH  Google Scholar 

  17. A. Aziz and T. Fang, Thermal analysis of an annular fin with (a) simultaneously imposed base temperature and base heat flux and (b) fixed base and tip temperatures, Energy Convers. Manage., 52, 2467–2478 (2011).

    Article  Google Scholar 

  18. I. N. Dul’ kin and G. I. Garas' ko, Analysis of the 1-D heat conduction problem for a single fin with temperature dependent heat transfer coefficient, Part I. Extended inverse and direct solutions, Int. J. Heat Mass Transf., 51, 3309–3324 (2008).

    Article  Google Scholar 

  19. M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, Int. J. Therm. Sci., 55, 69–75 (2012).

    Article  Google Scholar 

  20. I. Arauzo, C. Cortés, and A. Campo, Calculation of the optimum dimensions of annular-finned tube arrays using experimental forced convection coefficients, in: Proc. 3rd European Thermal Sciences Conf., September 10–13, 2000, Germany, Heidelberg (2000), pp. 1101–1105.

  21. A. Campo and B. Morrone, Meshless approach for computing the heat liberation from annular fins of tapered cross section, Appl. Math. Comput., 156, 137–144 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Arslanturk, Simple correlation for optimum design of annular fins with uniform thickness, Appl. Therm. Eng., 25, 2463–2468 (2005).

    Article  Google Scholar 

  23. C. Arslanturk, Analysis of thermal performance of annular fins with variable thermal conductivity by homotopy analysis method, J. Therm. Sci. Technol., 30, 1–7 (2010).

    Google Scholar 

  24. A. Campo and F. Rodriguez, Approximate analytic temperature solution for uniform annular fins by adapting the power series method, Int. Commun. Heat Mass Transf., 25, 809–818 (1998).

    Article  Google Scholar 

  25. M. S. H. Chowdhury, I. Hashim, and O. Abdulaziz, Comparison of homotopy analysis method and homotopyperturbation method for purely nonlinear fin-type problems, Commun. Nonlinear Sci. Numer. Simul., 14, 371–378 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Campo, B. Morrone, and S. Chikh, Easy and rapid computation of the transfer of heat from annular fins of nearly optimal profile with the fınite-difference technique and the shooting method, Int. J. Numer. Methods Heat Fluid Flow, 14, 1002–1010 (2004).

    Article  MATH  Google Scholar 

  27. P. Malekzadeh, H. Rahideh, and A. R. Setoodeh, Optimization of non-symmetric convective-radiative annular fins by differential quadrature method, Energy Convers. Manage., 48, 1671–1677 (2007).

    Article  Google Scholar 

  28. J. Qian, Heat transfer analysis of uniform annular fin on regular perturbation method, in: Proc. Second Int. Conf. on Mechanic Automation and Control Engineering (MACE), July 15–17, 2011, Inner Mongolia, China (2011), pp. 2211–2214.

  29. Y. T. Yang, S. K. Chien, and C. K. Chen, A double decomposition method for solving the periodic base temperature in convective longitudinal fins, Energy Convers. Manage., 49, 2910–2916 (2008).

    Article  Google Scholar 

  30. M. Inc, Application of homotopy analysis method for fin efficiency of convective straight fins with temperaturedependent thermal conductivity, Math. Comput. Simul., 79, 189–200 (2008).

    Article  MATH  Google Scholar 

  31. I. Arauzo, A. Campo, and C. Cortés, Quick estimate of the heat transfer characteristics of annular fins of hyperbolic profile with the power series method, Appl. Therm. Eng., 25, 623–634 (2005).

    Article  Google Scholar 

  32. F. Khani, M. A. Raji, and S. Hamedi-Nezhad, A series solution of the fin problem with a temperature-dependent thermal conductivity, Commun. Nonlinear Sci. Numer. Simulat., 14, 3007–3017 (2009).

    Article  Google Scholar 

  33. A. Acosta-Iborra and A. Campo, Approximate analytic temperature distribution and efficiency for annular fins of uniform thickness, Int. J. Therm. Sci., 48, 773–780 (2009).

    Article  Google Scholar 

  34. M. H. Babaei and Z. Chen, Transient hyperbolic heat conduction in a functionally graded hollow cylinder, J. Thermophys. Heat Transf., 24, 325–330 (2010).

    Article  Google Scholar 

  35. M. Jabbari, S. Sohrabpour, and M. R. Eslami, Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads, Int. J. Press. Vessels Piping, 79, 493–497 (2002).

    Article  MATH  Google Scholar 

  36. S. M. Hosseini, M. Akhlaghi, and M. Shakeri, Transient heat conduction in functionally graded thick hollow cylinders by analytical method, Heat Mass Transf., 43, 669–675 (2007).

    Article  Google Scholar 

  37. M. Asgari and M. Akhlaghi, Transient thermal stresses in two-dimensional functionally graded thick hollow cylinder with finite length, Arch. Appl. Mech., 80, 353–376 (2010).

    Article  MATH  Google Scholar 

  38. Z. S. Shao, K. K. Ang, J. N. Reddy, and T. J. Wang, Nonaxisymmetric thermomechanical analysis of functionally graded hollow cylinders, J. Therm. Stresses, 31, 515–536 (2008).

    Article  Google Scholar 

  39. Y. Tanigawa, Some basic thermoelastic problems for nonhomogeneous structural materials, Appl. Mech. Rev., 148, 287–300 (1995).

    Article  Google Scholar 

  40. L. H. You, J. J. Zhang, and X. Y. You, Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials, Int. J. Press. Vessels Piping, 82, 347–354 (2005).

    Article  Google Scholar 

  41. J. Zhao, X. Ai, and Y. Z. Li, Transient temperature fields in functionally graded materials with different shapes under convective boundary conditions, Heat Mass Transf., 43, 1227–1232 (2007).

    Article  Google Scholar 

  42. F. P. Incropera and D. P. DeWitt, Introduction to Heat Transfer, 3rd edn., Wiley, New York (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hassanzadeh.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 1, pp. 86–95, January–February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh, R., Bilgili, M. Assessment of Thermal Performance of Functionally Graded Materials in Longitudinal Fins. J Eng Phys Thermophy 91, 79–88 (2018). https://doi.org/10.1007/s10891-018-1721-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1721-3

Keywords

Navigation