Skip to main content

Advertisement

Log in

Digital Laser Speckle Technologies in Measuring Blood Flow in Biotissues and the Stressed-Strained State of the Maxillodental System

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A method has been developed for estimating the stressed-strained state in the ″orthodontic apparatus–dentin″ system with the use of laser-optical diagnostics based on speckle photography. We have determined the indices of the stressed-strained state in the ″orthodontic apparatus–dentin″ system depending on the composition and form of the orthodontic arch cross section. We have determined the optimum indices of the stressed-strained state of orthodontic arches in patients with periodontium diseases in combination with maxillodental anomalies and deformations, to which the following arches correspond: from copper–nickel–titanium (CuNiTi) alloy with circular (0.012″, 0.013″, 0.014″, 0.016″, 0.018″), and rectangular (0.014 × 0.025″, 0.016 × 0.025″) cross sections, from titanium–molybdenum alloy (TMA) with a rectangular cross section (0.016 × 0.025″), and from stainless steel (SS) with a circular (0.016″, 0.018″) cross section. Direct correlation has been established between indices of the stressed-strained state in the ″orthodontic apparatus–dentin″ system and the periodontium capillary pressure (r = 0.78, p < 0.05), as well as inverse strong correlation with the periodontium microcirculation intensity (r = –0.88, p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. B. Bazylev and N. A. Fomin, Quantitative Visualization of Flows Based on Speckle Technologies [in Russian], Belaruskaya Navuka, Minsk (2016).

    Google Scholar 

  2. F. Boden, N. Lawson, H. W. Jentink, and J. Kompenhans (Eds.), Advanced in-Flight Measurement Techniques, Springer, Berlin and Heidelberg (2013).

    Google Scholar 

  3. R. J. Adrian and J. Westerweel, Particle Image Velocimetry, Cambridge University Press, Cambridge (2010).

    MATH  Google Scholar 

  4. V. M. Boiko, A. M. Orishits, A. A. Pavlov, and V. V. Pikalov (Acad. V. M. Fomin Ed.), Methods of Optical Diagnostics in Aerophysical Experiments [in Russian], Novosibirsk. Gos. Univ., Novosibirsk (2009).

  5. A. P. Vladimirov and A. A. Bakharev, Dynamic speckle interferometry of thin biologibcal objects: theory, experiments, and practical perspectives, Chapter 6, in: Alexander A. Banishev, Mithun Bhowmick, and Jue Wang (Eds.), Optical Interferometry, InTech, Rijeka, Groatia (2017), pp. 103–141.

    Google Scholar 

  6. V. V. Tuchin, Methods of optical biomedical visualization: from subcellular structures to tissues and organisms, Usp. Fiz. Nauk, 186, No. 5, 550–567 (2016).

    Article  Google Scholar 

  7. Sergei Rubnikovich, Yuliya Denisova, and Nikita Fomin, New Laser Diagnostic Techniques and Therapy in Stomatology [in Russian], Lambert Academic Publishing, Saarbrücken, Deutschland (2014).

    Google Scholar 

  8. L. V. Tanin and A. L. Tanin, Biomedical and Resonance Optics. Therapy and Practice [in Russian], Balaruskaya Navuka, Minsk (2011).

    Google Scholar 

  9. J. D. Rigden and E. I. Gordon, The granularity of scattered optical maser light, Proc. IRE, 50, 2367–2368 (1962).

    Google Scholar 

  10. J. W. Goodman, Statistical properties of laser speckle patterns, Stanford Electronics Lab. Tech. Rep., No. 2303–1 (1963).

  11. M. D. Stern, In vivo evaluation of microcirculation by coherent light scattering, Nature, 254, 56–58 (1975).

    Article  Google Scholar 

  12. J. D. Briers, Some Applications of Holographic Interferometry and Speckle Correlation Techniques to the Study of Plant Growth and Physiology, PhD Thesis, London (1975).

  13. T. Asakura and N. Takai, Dynamic laser speckle and their application to velocity measurement of diffuse object, J. Appl. Phys., 25, 179–194 (1981).

    Article  Google Scholar 

  14. I. V. Markhvida and L. V. Tanin, Соrrelation of speckle patterns produced bу the longitudinal motion of а diffuse object along the optical axis, Optik, 72, No. 4, 168–170 (1986).

    Google Scholar 

  15. B. Ruth, Superposition of two dynamic speckle patterns: An application to non-contact blood flow measurements, J. Mod. Optics, 34, 257–273 (1987).

    Article  Google Scholar 

  16. A. Oulamara, G. Tribillon, and J. Duvernoy, Biological activity measurement on botanical specimen surface using a temporal decorellation effect of laser speckle, J. Mod. Optics, 36, 165–179 (1989).

    Article  Google Scholar 

  17. J. D. Briers, G. Richards, and X. W. He, Capillary blood flow monitoring using laser speckle contrast analysis (LASCA), J. Biomed. Opt., 4, No. 1, 164–175 (1999).

    Article  Google Scholar 

  18. V. P. Ryabukho, Speckle interferometry, Sorosovsk. Obrazov. Zh., No. 5, 112–124 (2001).

    Google Scholar 

  19. N. Fomin, C. Fuentes, J.-B. Saulnier, and J.-L. Tuhault, Tissue blood flux monitoring by laser speckle photography, Laser Phys., 11, No. 4, 525–529 (2001).

    Google Scholar 

  20. N. B. Bazulev, N. A. Fomin, E. I. Lavinskaya, and S. P. Rubnikovich, Real-time blood micro-circulation analysis in living tissues by dynamic speckle technique, Wroclaw University of Technology, Polish Society of Biomechanics, Acta Bioeng. Biomech., 4, 510–511 (2002).

    Google Scholar 

  21. N. Bazulev, N. Fomin, C. Fuentes, K. Takayama, J.-L. Tuhault, et al., Laser monitor for soft and hard biotissue analysis using dynamic speckle photography, Laser Phys., 13, Issue 5, 786–795 (2003).

    Google Scholar 

  22. N. Bazulev, N. Fomin, T. Hirano, E. Lavinskaya, T. Mizukaki, A. Nakagawa, S. Rubnikovich, and K. Takayama, Quasi-real time bio-tissue monitoring by dynamic laser speckle photography, J. Flow Visual., 6, No. 4, 371–380 (2003).

    Article  Google Scholar 

  23. Yu. A. Ostrovskii and L. V. Tanin, Tunable organic dye laser for resonance interferometry and holography, Zh. Tekh. Fiz., 45, No. 8, 1756–1766 (1975).

    Google Scholar 

  24. G. V. Dreiden, A. N. Zaidel′, G. V. Ostrovskaya, Yu. A. Ostrovskii, N. A. Pobedonostseva, and L. V. Tanin, Application of resonance interferometry and holography methods for plasma diagnostics, Fiz. Plazmy, 1, Issue 3, 462–482 (1975).

  25. V. N. Croshko, N. A. Fomin, and R. I. Soloukhin, Population inversion and gain distribution in supersonic mixed flow systems, Acta Astronaut., 2, Nos. 4–5, 929–939 (1975).

    Article  Google Scholar 

  26. N. Fomin, W. Merzkirch, D. Vitkin, and H. Wintrich, Visualization of turbulence anisotropy by single exposure speckle photography, Exp. Fluids, 20, 476–479 (1996).

    Article  Google Scholar 

  27. N. Fomin, E. Lavinskaya, and D. Vitkin, Speckle tomography of turbulent flows with density fluctuations, Exp. Fluids, 33, 160–169 (2002).

    Article  Google Scholar 

  28. D. Vitkin, W. Merzkirch, and N. Fomin, Quantitative visualization of the change of turbulence structure caused by a normal shock wave, J. Visual., 1, No. 1, 29–35 (1998).

    Article  Google Scholar 

  29. N. Fomin, E. Lavinskaya, and K. Takayama, Limited projections laser speckle tomography of complex flows, Opt. Lasers Eng., 44, Issues 3–4, 335–349 (2006).

    Article  Google Scholar 

  30. N. A. Fomin, S. P. Rubnikovich, and N. B. Bazylev, New possibilities of investigating blood flow in the soft tissues of oral cavity, J. Eng. Phys. Thermophys., 81, No. 3, 533–543 (2008).

    Article  Google Scholar 

  31. Yu. L. Denisova, N. B. Bazylev, S. P. Rubnikovich, and N. A. Fomin, Laser speckle technologies in stomatology. Diagnostics of stresses and strains of the hard biotissues and orthodontic and orthopedic structures, J. Eng. Phys. Thermophys., 86, No. 4, 940–951 (2013).

    Article  Google Scholar 

  32. Sergei Chizhik, Lizaveta Drozd, and Nikita Fomin, Digital optical and scanning probe microscopy for inspection and manipulation of biocells, Chapter 7, in: Michael W. Collins and Carola S. König (Eds.), Micro and Nano Flow Systems for Bioanalysis, In series: Tuan Vo-Dinh (Ed.), Bioanalysis: Advanced Materials, Methods and Devices, Duke Univ., US, Vol. 2, Springer, Berlin (2013), pp. 87–105.

    Google Scholar 

  33. Nikita A. Fomin, Nikolai B. Bazylev, Yulija L. Denisova, and Sergei P. Rubnikovich, Diagnostics of stresses and strains of hard biotissues in vivo, 4th Micro and Nano Flows Conf., UCI, London, UK (2014), pp. 1–6.

  34. Sergey Shimchenko, Vladimir Leschevich, Oleg Penyazkov, and Nikita Fomin, Visualization and analysis of the burning particles motion in combustion chamber of a rapid compression machine, J. Flow Visual. Image Process., 23, Issues 1−2, 1−10 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 6, pp. 1588–1599, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubnikovich, S.P., Denisova, Y.A. & Fomin, N.A. Digital Laser Speckle Technologies in Measuring Blood Flow in Biotissues and the Stressed-Strained State of the Maxillodental System. J Eng Phys Thermophy 90, 1513–1523 (2017). https://doi.org/10.1007/s10891-017-1713-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1713-8

Keywords

Navigation