Skip to main content
Log in

MHD Mixed Convection Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field with the Hall Effect

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Takenouchi, Transient magnetohydrodynamic channel flow with axial symmetry at a supersonic speed, J. Phys. Soc. Jpn., 54, 1329–1338 (1985).

    Article  Google Scholar 

  2. K. A. Helmy, MHD unsteady free convection flow past a vertical porous plate, Z. Angew. Math. Mech., 98, 255–270 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. A. Helmy, On unsteady magnetohydrodynamic flow of viscous conducting fluid, Z. Angew. Math. Mech., 80, 665–680 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  4. B. S. Jaiswal and V. M. Soundalgekar, Unsteady free and forced convection MHD flow past an infinite vertical porous plate with variable suction and oscillating plate temperature, Bull. Allahabad Math. Soc., 16, 81–95 (2001).

    MathSciNet  MATH  Google Scholar 

  5. P. Chandran, N. C. Sacheti, and A. K. Singh, On laminar boundary layer flow of electrically conducting liquids near an accelerated vertical plate, Phys. Chem. Liq., 40, No. 3, 241–254 (2002).

    Article  Google Scholar 

  6. R. B. Kumar, D. R. S. Raghuraman, and R. Muthucumaraswamy, Hydromagnetic flow and heat transfer on a continuously moving vertical surface, Acta Mechanica, 153, 249–253 (2002).

    Article  MATH  Google Scholar 

  7. R. C. Chaudhary and B. K. Sharma, Combined heat and mass transfer by laminar mixed convection flow from a vertical surface with induced magnetic field, J. Appl. Phys., 99, 034901 (2006).

    Article  Google Scholar 

  8. B. K. Sharma and R. C. Chaudhary, Hydromagnetic unsteady mixed convection and mass transfer flow past a vertical porous plate immersed in a porous medium with Hall effect, Eng. Trans.., 56, No. 1, 3–23 (2008).

    MATH  Google Scholar 

  9. O. D. Makinde, Computational modelling of MHD unsteady flow and heat transfer over a flat plate with Navier slip and Newtonian heating, Braz. J. Chem. Eng., 29, No. 1, 159–166 (2012).

    Article  Google Scholar 

  10. G. S. Seth and S. K. Ghosh, Unsteady hydromagnetic flow in a rotating channel in the presence of oblique magnetic field, Int. J. Eng. Sci., 24, 1183–1193 (1986).

    Article  MATH  Google Scholar 

  11. S. K. Ghosh, A note on steady and unsteady hydromagnetic flow in a rotating channel in the presence of inclined magnetic field, Int. J. Eng. Sci., 29, 1013–1016 (1991).

    Article  MATH  Google Scholar 

  12. S. K. Ghosh, A note on unsteady hydromagnetic flow in a rotating channel permeated by an inclined magnetic field in the presence of an oscillator, Czech. J. Phys., 51, 799–804 (2001).

    Article  Google Scholar 

  13. M. Guria, S. Das, R. N. Jana, and S. K. Ghosh, Oscillatory Couette flow in the presence of an inclined magnetic field, Meccanica, 44, 555–564 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. S. Seth, R. Nandkeolyar, N. Mahto, and S. K. Singh, MHD Couette flow in a rotating system in the presence of inclined magnetic field, Appl. Math. Sci., 3, 2919–2932 (2009).

    MathSciNet  MATH  Google Scholar 

  15. H. Sato, Hall effect in the viscous flow of ionized gas between parallel plates under transverse magnetic field, J. Phys. Soc. Jpn., 16, 1427–1433 (1961).

    Article  MATH  Google Scholar 

  16. A. Sherman and G. W. Sutton, Engineering Magnetohydrodynamics, McGraw-Hill, New York (1965).

    Google Scholar 

  17. M. Katagiri, The effect of Hall current in the MHD boundary layer flow past a semi-infinite plate, J. Phys. Soc. Jpn., 27, 1051–1059 (1969).

    Article  Google Scholar 

  18. M. A. Hossain and K. Mohammad, Effect of Hall current on hydromagnetic free convection flow near an accelerated porous plate, Jpn. J. Appl. Phys., 27, 1531–1535 (1988).

    Article  Google Scholar 

  19. I. Pop and T. Watanabe, Hall effects on magnetohydrodynamic free convection about a semi-infinite vertical flat plate, Int. J. Eng. Sci., 32, 1903–1911 (1994).

    Article  MATH  Google Scholar 

  20. E. M. Aboeldahab and E. M. E. Elbarbary, Hall current effect on magnetohydrodynamic free convection flow past a semi-infinite vertical plate with mass transfer, Int. J. Eng. Sci., 39, 1641–1652 (2001).

    Article  MATH  Google Scholar 

  21. H. S. Takhar, S. Roy, and G. Nath, Unsteady free convection flow over an infinite vertical porous plate due to the combined effects of thermal and mass diffusion, magnetic field and Hall currents, Heat Mass Transf., 39, 825–834 (2003).

    Article  Google Scholar 

  22. B. K. Sharma, A. K. Jha, and R. C. Chaudhary, Hall effect on MHD mixed convective flow of a viscous incompressible fluid past a vertical porous plate immersed in a porous medium with heat source/sink, Rom. J. Phys., 52, No. 5, 487–505 (2007).

    Google Scholar 

  23. S. K. Ghosh and I. Pop, Hall effects on MHD plasma Couette flow in a rotating environment. Int. J. Appl. Mech. Eng., 9, 293–305 (2004).

    MATH  Google Scholar 

  24. T. Hayat, S. Nadeem, and S. Asghar, Hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system, Int. J. Eng. Sci., 42, 65–78 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  25. G. S. Seth, R. Nandkeolyar, and M. S. Ansari, Hall effects on oscillatory hydromagnetic Couette flow in a rotating system. Int. J. Acad. Res., 1, 6–17 (2009).

    Google Scholar 

  26. G. S. Seth, R. Nandkeolyar, and M. S. Ansari, Effects of Hall current and rotation on unsteady MHD Couette flow in the presence of an inclined magnetic field, J. Appl. Fluid Mech., 5, No. 2, 67–74 (2012).

    Google Scholar 

  27. G. S. Seth, M. S. Ansari, and R. Nandkeolyar, Unsteady hydromagnetic Couette flow within porous plates in a rotating system, Adv. Appl. Math. Mech., 2, No. 3, 286–302 (2010).

    MathSciNet  Google Scholar 

  28. G. Mandal, K. K. Mandal, and G. Choudhury, On combined effects of Coriolis force and Hall current on steady MHD Couette flow and heat transfer, J. Phys. Soc. Jpn., 51, 2010–2015 (1982).

    Article  Google Scholar 

  29. S. K. Ghosh, O. A. Beg, and M. Narahari, Hall effects on MHD flow in a rotating system with heat transfer characteristics, Meccanica, 44, 741–765 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mishra.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 6, pp. 1563–1574, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Sharma, B.K. MHD Mixed Convection Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field with the Hall Effect. J Eng Phys Thermophy 90, 1488–1499 (2017). https://doi.org/10.1007/s10891-017-1710-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1710-y

Keywords

Navigation