Skip to main content
Log in

Molecular-Dynamic Calculation of Effects Appearing in Removing a Lead Film from Graphene

  • MISCELLANEA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

By the molecular-dynamics technique, the authors have investigated the bombardment of a thin lead film on graphene by a beam of Xe clusters in the range of energies 5–30 eV at an angle of incidence of 45o. Visual observation and the density profile of the Pb film point to a complete separation of the film from graphene followed by the formation of a lead cluster during the bombardment with a cluster energy of 20 eV. Such bombardment leads to maximum horizontal and minimum vertical mobilities of C atoms in graphene and also generates a minimum stress in the film′s plane due to vertical forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, No. 3, 183–191 (2007).

    Article  Google Scholar 

  2. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Electromechanical resonators from graphene sheets, Science, 315, No. 5811, 490–493 (2007).

    Google Scholar 

  3. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, No. 5887, 385–388 (2008).

    Google Scholar 

  4. I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol. B, 25, No. 6, 2558–2561 (2007).

    Article  Google Scholar 

  5. W. Wang, S. Li, J. Min, C. Yi, Y. Zhan, and M. Li, Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study, Nanoscale Res. Lett., 9, No. 1, 41–45 (2014).

    Article  Google Scholar 

  6. L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, Graphene oxidation: thickness dependent etching and strong chemical doping, Nano Lett., 8, No. 7, 1965–1970 (2008).

    Article  Google Scholar 

  7. J. van der Lit, M. P. Boneschanscher, D. Vanmaekelbergh, M. Ijäs, A. Uppstu, M. Ervasti, A. Harju, P. Liljeroth, I. Swart, Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom, Nat. Commun., 4, No. 6, 2023–2027 (2013).

    Google Scholar 

  8. S. S. Moliver, R. R. Zimagulov, and A. L. Semenov, Generation of a Stone–Walles defect in a carbon nanotube under breaking deformation, Pis′ma Zh. Tekh. Fiz., 37, No. 14, 68–75 (2011).

    Google Scholar 

  9. J. M. Seminario, L. Yan, and Y. Ma, Scenarios for molecular-level signal processing, Proc. IEEE, 93, 1753–1757 (2005).

    Article  Google Scholar 

  10. A. E. Galashev and V. A. Polukhin, Removal of copper from graphene by argon-cluster bombardment. Computer experiment, Fiz. Met. Metalloved., 115, No. 7, 742–750 (2014).

    Google Scholar 

  11. A. Y. Galashev, Computer study of the removal of Cu from the graphene surface using Ar clusters, Comp. Mater. Sci., 98, 123–128 (2015).

    Article  Google Scholar 

  12. A. E. Galashev and V. A. Polukhin, Compaction of copper film on graphene by argon-beam bombardment: computer experiment, J. Surf. Invest. X-ray, Synchrotron Neutron Tech., 8, No. 5, 1082–1088 (2014).

    Article  Google Scholar 

  13. M. Neek-Amal and F. M. Peeters, Defected graphene nanoribbons under axial compression, Appl. Phys. Lett., 97, No. 15, 153118-1–3 (2010).

    Article  Google Scholar 

  14. K. Doi, I. Onishi, and S. Kawano, Dissociative adsorption of H2 molecules on steric graphene surface: Ab initio MD study based on DFT, Comp. Theor. Chem., 994, 54–64 (2012).

    Article  Google Scholar 

  15. J. Tersoff, Empirical interatomic potential for carbon, with application to amorphous carbon, Phys. Rev. Lett., 61, No. 25, 2879–2882 (1988).

    Article  Google Scholar 

  16. S. J. Stuart, A. V. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 112, No. 14, 6472–6486 (2000).

    Article  Google Scholar 

  17. A. Y. Galashev and O. R. Rakhmanova, Computer simulation of the bombardment of a copper film on graphene with argon clusters, Chin. Phys. B, 24, No. 2, 0207011-1–8 (2015).

    Article  Google Scholar 

  18. B. D. Todd and R. M. Lynden-Bell, Surface and bulk properties of metals modeled with Sutton–Chen potentials, Surf. Sci., 281, Nos. 1−2, 191–206 (1993).

    Article  Google Scholar 

  19. H. Rafii-Tabar, Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations, Phys. Rep., 325, No. 6, 239–310 (2000).

    Article  Google Scholar 

  20. Y. M. Kim and S.-C. Kim, Adsorption/desorption isotherm of nitrogen in carbon micropores, J. Korean Phys. Soc., 40, No. 2, 293–299 (2002).

    Google Scholar 

  21. A. Arkundato, Z. Su’ud, M. Abdullah, and W. Sutrisno, Study of liquid lead corrosion of fast nuclear reactor and its mitigation by using molecular dynamics method, Int. J. Appl. Phys. Math., 3, No. 2, 1–7 (2013).

    Article  Google Scholar 

  22. F.-Y. Li and R. S. Berry, Dynamics of Xe atoms in NaA zeolites and 129Xe chemical shift, J. Phys. Chem., 99, No. 9, 2459–2468 (1995).

    Article  Google Scholar 

  23. J. F. Ziegler, J. P. Biersack, and U. Littmark, Stopping and Ranges of Ions in Matter, Vol. 1, Pergamon Press, New York (1985).

    Google Scholar 

  24. A. Delcorte and B. J. Garrison, High yield events of molecule emission induced by keV particle bombardment, J. Phys. Chem. B, 104, No. 29, 6785–6800 (2000).

    Article  Google Scholar 

  25. A. Y. Galashev, Computer study of the removal of Cu from the graphene surface using Ar clusters, Comp. Mater. Sci., 98, 123–128 (2015).

    Article  Google Scholar 

  26. F. D. Lamari and D. Levesque, Hydrogen adsorption on functionalized graphene, Carbon, 49, No. 15, 5196–5200 (2011).

    Google Scholar 

  27. D. Ma and Z. Yang, First-principles studies of Pb doping in graphene: stability, energy gap and spin-orbit splitting, New J. Phys., 13, No. 12, 123018-1–10 (2011).

    Article  Google Scholar 

  28. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, No. 8, 3684–3690 (1984).

    Article  Google Scholar 

  29. A. E. Galashev and A. A. Galasheva, Molecular-dynamic modeling of the removal of copper from graphene by argoncluster bombardment, Khim. Vys. Énerg., 48, No. 2, 142–147 (2014).

    Google Scholar 

  30. A. E. Galashev and O. R. Rakhmanova, Stability of graphene and of materials based on it under mechanical and thermal actions, Usp. Fiz. Nauk, 184, No. 10, 1045–1065 (2014).

    Article  Google Scholar 

  31. S. Yu. Davydov, Energy of substitution of atoms in the system "epitaxy graphene-buffer layer–SiC-substrate," Fiz. Tverd. Tela, 54, No. 4, 821–827 (2012).

    Google Scholar 

  32. Z. H. Jin, H. W. Sheng, and K. Lu, Melting of Pb clusters without free surfaces, Phys. Rev. B, 60, No. 1, 141–149 (1999).

    Article  Google Scholar 

  33. Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu, and Z. X. Shen, Tunable stress and controlled thickness modification in graphene by annealing, ASC Nano, 2, No. 5, 1033–1037 (2008).

    Google Scholar 

  34. A. E. Galashev and O. R. Rakhmanova, Numerical modeling of the heating of an aluminum film on bilayer graphene, Teplofiz. Vys. Temp., 52, No. 3, 385–391 (2014).

    Google Scholar 

  35. A. E. Galashev, Computer simulation of the thermal stability of nickel films on bilayer graphene, Teplofiz. Vys. Temp., 52, No. 5, 670–676 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 4, pp. 1076–1084, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E., Rakhmanova, O.R. Molecular-Dynamic Calculation of Effects Appearing in Removing a Lead Film from Graphene. J Eng Phys Thermophy 90, 1026–1034 (2017). https://doi.org/10.1007/s10891-017-1653-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1653-3

Keywords

Navigation