Skip to main content
Log in

Heat Transfer in the Anode Region in Plasma-Electrolytic Heating of a Cylindrical Sample

  • HEAT CONDUCTION AND HEAT TRANSFER IN TECHNOLOGICAL PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The energy balance in a three-phase system "anode–vapor/gas envelope–electrolyte" and the results of experimental determination of the heat fluxes acting in the vapor–gas envelope are considered. To determine the fluxes quantitatively, the calorimetric method and the theory of inverse problems of the thermal conductivity of solid bodies are used. It is shown that heat fluxes into the anode and electrolyte increase with the voltage delivered to the electrochemical cell, whereas the heat flux associated with the vapor release to the atmosphere remains practically unchanged. An increase in the concentration of the current-conducting component in the electrolyte leads to a certain growth of the heat flux into the anode and to a decrease of the flux into the electrolyte. The stages of a nonstationary period of the process of plasma-electrolytic heating have been revealed, and it has been established that the time of heating the vapor–gas envelope is several times shorter than the time of heating a sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mizuno, T. Akimoto, K. Azumi, T. Ohmori, Y. Aoki, and A. Takahashi, Hydrogen evolution by plasma electrolysis in aqueous solution, Jpn. J. Appl. Phys., 44, No. 1A, 396–401 (2005).

    Article  Google Scholar 

  2. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol., 122, 73–93 (1999).

    Article  Google Scholar 

  3. E. Resner, G. Marx, G. Wiht, A. M. Sukhotin, V. G. Khoroshailov, and V. A. Zaitsev, Patent 0152 144 GDR, Publ. 1981.

  4. F. Çavuşlu and M. Usta, Kinetics and mechanical study of plasma electrolytic carburizing for pure iron, Appl. Surf. Sci., 257, No. 9, 4014–4020 (2011).

    Article  Google Scholar 

  5. P. N. Belkin, Anode electrochemical thermal modification of metals and allows, Surf. Eng. Appl. Electrochem., 46, No. 6, 558–569 (2010).

    Article  Google Scholar 

  6. K. Inoue, Patent 3840450 USA, Publ. 1974.

  7. X. Nie, L. Wang, Z. C. Yao, L. Zhang, and F. Cheng, Sliding wear behaviour of electrolytic plasma nitrided cast iron and steel, Surf. Coat. Technol., 200, Nos. 5–6, 1745–1750 (2005).

  8. X. Nie, C. Tsotsos, A. Wilson, A. L. Yerokhin, A. Leyland, and A. Matthews, Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels, Surf. Coat. Technol., 139, Nos. 2–3, 135–142 (2001).

  9. P. Belkin, B. Krit, I. Dyakov, V. Vostrikov, and T. Mukacheva, Anode saturation with nitrogen and carbon in aqueous solutions of carbamide-bearing electrolytes, Met. Sci. Heat Treat., 52, Nos. 1–2, 20–24 (2010).

  10. M. A. Béjar and R. Henríquez, Surface hardening of steel by plasma-electrolysis boronizing, Mater. Des., 30, No. 5, 1726–1728 (2009).

    Article  Google Scholar 

  11. S. F. Luk, T. P. Leung, W. S. Miu, and I. R. Pashby, Patent US 6022468, February 8, 2000.

  12. E. I. Meletis, X. Nie, F. L. Wang, and J. C. Jiang, Electrolytic plasma processing for cleaning and metal-coating of steel surface, Surf. Coat. Technol., 150, 246–256 (2002).

    Article  Google Scholar 

  13. H. H. Kellogg, Anode effect in the aqueous electrolyses, J. Electrochem. Soc., 97, No. 4, 133–142 (1950).

    Article  Google Scholar 

  14. P. N. Belkin, V. I. Ganchar, A. D. Davydov, A. I. Dikusar, and E. A. Pasinkovskii, Anodic heating in aqueous solutions of electrolytes and its use for treating metal surfaces, Surf. Eng. Appl. Electrochem., No. 2, 1–15 (1997).

  15. P. Taheri and C. Dehghanian, A phenomenological model of nanocrystalline coating production using the plasma electrolytic saturation (PES) technique, Trans. B: Mech. Eng., 16, No. 1, 87–91 (2009).

    Google Scholar 

  16. P. N. Belkin, I. V. Suminov, A. V. Épel′fel′d, V. B. Lyudin, B. L. Krit, and A. M. Borisov, Plasma-Electrolytic Modification of the Surface of Metals and Alloys [in Russian], Vol. 1, Tekhnosfera, Moscow (2011).

  17. S. Yu. Shadrin and P. N. Belkin, Analysis of models for calculation of temperature of anode plasma electrolytic heating, Int. J. Heat Mass Transf., 55, No. 1, 179–186 (2012).

    Article  MATH  Google Scholar 

  18. P. N. Belkin, V. I. Ganchar, and A. K. Tovarkov, Heat exchange between the anode and vapor–gas envelope during electrolytic heating, J. Eng. Phys. Thermophys., 51, No. 1, 154–155 (1986).

    Google Scholar 

  19. V. I. Ganchar, Parameters of heat transfer in the anode electrolytic heating, J. Eng. Phys. Thermophys., 60, No. 1, 92–95 (1991).

    Article  Google Scholar 

  20. P. N. Belkin, T. L. Mukhacheva, and I. G. Dyakov, Features of the distribution of the heat fluxes in the anode–vapor−gas sheath system in anodic electrolytic heating, J. Eng. Phys. Thermophys., 81, No. 6, 1069–1075 (2008).

    Article  Google Scholar 

  21. V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer [in Russian], Énergoizdat, Moscow (1981).

    Google Scholar 

  22. P. N. Belkin and A. K. Tovarkov, Heat fluxes in heating the anode in water solutions, Vestn. A. N. Nekrasov Kostromsk. Gos. Univ., No. 3, 8–12 (2001).

  23. I. G. D′yakov, S. Yu. Shadrin, and P. N. Belkin, Features of anode heating in movement of electrolyte in a free convection regime, Surf. Eng. Appl. Electrochem., No. 4, 7–12 (2004).

  24. J. Garbarz-Olivier and C. Guilpin, Etude des discharges electriques produites entre l′electrode et la solution lors deseffects d′anode et de cathode dans les electrolytes aqueux, J. Chim. Phys. Phys.-Chim. Biol., 72, No. 2, 207–214 (1975).

    Article  Google Scholar 

  25. E. A. Artyukhin, V. V. Baranov, B. G. Ganchev, and A. V. Nenarokomov, Nonstationary heat transfer on wetting heated surfaces, Teplofz. Vys. Temp., 25, No. 5, 975–979 (1987).

    Google Scholar 

  26. O. M. Alifanov, Inverse Heat Exchange Problems [in Russian], Mashinostroenie, Moscow (1988).

    Google Scholar 

  27. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Ill-Posed Problems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  28. I. G. D′yakov, V. S. Belkin, S. Yu. Shadrin, and P. N. Belkin, Peculiarities of heat transfer at anodic plasma electrolytic treatment of cylindrical pieces, Surf. Eng. Appl. Electrochem., 50, No. 4, 346–355 (2014).

  29. V. I. Ganchar and E. G. Dmitriev, Current–voltage diagrams and voltage–temperature characteristics of the anode heating, Surf. Eng. Appl. Electrochem., No. 2, 23–25 (1989).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Shadrin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 4, pp. 908–918, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirov, A.V., Belkin, P.N. & Shadrin, S.Y. Heat Transfer in the Anode Region in Plasma-Electrolytic Heating of a Cylindrical Sample. J Eng Phys Thermophy 90, 862–872 (2017). https://doi.org/10.1007/s10891-017-1635-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1635-5

Keywords

Navigation