Skip to main content

Advertisement

Log in

On the Internal Gas Dynamics and Efficiency of a Vortex Water-Vapor Plasma Generator

  • TRANSFER PROCESSES IN LOW-TEMPERATURE PLASMA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Results of experimental investigations of a new-type generator of an arc water plasma, having a high thermal efficiency close to 100%, are presented. This generator represents a system comprising a vortex arc plasma generator, in which an electric arc is stabilized by water vapor and a straight-through-flow tubular electric steam generator. Such a high efficiency of the plasma generator system was achieved due to the refinement of the internal gas dynamics of the plasma generator and the heat and mass transfer in its discharge channel as a result of the improvement of the vortex stabilization and thermal insulation of an arc discharge in it by the specially organized ″instantly permeable″ channel wall cooled by only the working water used for generation of the plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hrabovsky, Thermal plasma generators with water stabilized arc, The Open Plasma Phys., No. 2, 99–104 (2009).

    Article  Google Scholar 

  2. B. I. Mikhailov, Regeneration of heat in electric-arc vortex steam plasma generators. Auto-plasmatrons, Teplofiz. Aéromekh., 12, No. 1, 135–148 (2005).

    Google Scholar 

  3. B. I. Mikhailov, Electric-arc water-vapor plasma generators. Part 2, Teplofiz. Aéromekh., 10, No. 4, 637–657 (2003).

  4. M. F. Zhukov (Ed.), Thermal Protection of the Walls of Plasma Generators, Vol. 15, Low-Temperature Plasma [in Russian], Izd. Inst. Teplofiz. SO RAN, Novosibirsk (1995), P. 313.

  5. L. I. Sharakhovskii, N. A. Kostin, A. F. Klishin, A. S. Olenovich, and O. I. Yas′ko, On the efficiency of the vortex thermal insulation of an electric arc, Izv. Akad. Nauk BSSR, Ser. Fiz.-Énerg., No. 2, 28–31 (1989).

  6. R. Borrelli and A. Martucci, SCIROCCO plasma wind tunnel. http://cdn.intechopen.com/pdfs-wm/16692.pdf.

  7. J. E. Anderson and E. R. G. Eckert, Transpiration cooling of a constricted electric-arc heater, AIAA J., 5, No. 4, 699–706 (1967).

    Article  Google Scholar 

  8. J. E. Anderson, Transfer Phenomena in Thermal Plasma [Russian translation], Énergiya, Moscow (1972), pp. 107–108.

    Google Scholar 

  9. N. A. Kostin, A. N. Mukovozchik, A. S. Olenovich, L. P. Podenok, and L. I. Sharakhovskii, Investigation of a porous plasma generator with swirling, Nauchn. Tr. Inst. Teplo- i Massoobmena AN BSSR, Izd. Otd. ITMO, Minsk (1988), pp. 35–39.

  10. M. F. Zhukov, V. Ya. Smolyakov, and B. A. Uryukov, Electric-Arc Heaters of Gas (Plasma Generators) [in Russian], Nauka, Moscow (1973).

  11. M. L. Rozenzweig, W. S. Lewellen, and D. H. Ross, Confined vortex flows interacting with the boundary layer, Raketn. Tekh. Kosmonavt., No. 12, 94–103 (1964).

  12. L. Charakhovski and N. Kostin, The vortex flows in electric arc heaters, Heat Transf.: Sov. Res., 16, No. 5, 126–140 (1984).

    Google Scholar 

  13. L. I. Sharakhovskii and N. A. Kostin, Vortex flows in electric-arc heaters of gas, Nauchn. Tr. Inst. Teplo- i Massoobmena AN BSSR, Izd. Otd. ITMO, Minsk (1982), pp. 74–90.

  14. N. Kostin, A. Olenovich, L. Podenok, and L. Sharakhovskii, On methods of calculating the parameters of the vortex chambers of plasma generators, in: Proc. X All-Union. Conf. On Generators of Low-Temperature Plasma, ILIM, Frunze (1983), pp. 330–331.

  15. H. Görtler, Dreidimensionales zur Stabilitätstheorie laminarer Grenzschichten, Z. Angew. Math. Mech., No. 35, 362–363 (1955).

  16. V. A. Rudnitskii, On the coefficient of conservation of velocity in calculations of cyclone-vortex chambers, Éffekt. Teploénerg. Protsessov, Issue 1, 126–133 (1976).

  17. A. Essiptchouk, Influence of the inlet conditions on the vortex characteristics, J. Eng. Phys. Thermophys., 84, No. 5, 1126–1131 (1976).

    Article  Google Scholar 

  18. S. Boriskin, E. Gorozhankin, and Yu. Tokarev, Plasma generator with distributed blow of working gas, in: Proc. XI All-Union Conf. on Generators of Low-Temperature Plasma, Inst. Teplofiz. SO AN SSSR, Novosibirsk (1989), 1, pp. 82–83.

  19. L. Charakhovski, A. Marquesi, C. Otani, G. Petraconi Filho, R. Bicudo, A. S. da Silva Sobrinho, M. Massi, A. Gorbunov, and H. S. Maciel, High-efficient steam plasma torch — Preliminary study, Proc. 7th Int. Workshop and Exhib on Plasma Assisted Combustion (IWEPAC), 13–15 September 2011, Las-Vegas, Nevada, USA (2011).

  20. L. I. Sharakhovskii and A. I. Sharakhovskii, Interelectrode Insert in a Plasma Generator, RB Patent No. 16787, published 30.12. 2011, Byull. No. 1.

  21. L. Charakhovski, A. R. Marquesi, C. Otani, G. Petraconi Filho, R. Bicudo, A. S. da Silva Sobrinho, M. Massi, H. S. Maciel, A. Gorbunov, and A. Halinouski, Water steam plasma equipment, Proc. 8th Int. Conf. on Plasma Technologies (ICPAT8), 18–21 February 2013, Rio de Janeiro (2013), pp. 48–51.

  22. M. R. Predtechenskii and O. M. Tukhto, Plasma torch with liquid metal electrodes, High Energy Chem., 40, No. 2, 119–124 (2006).

    Article  Google Scholar 

  23. L. I. Sharakhovskii and A. I. Sharakhovskii, Water-Vapor Plasma Generator and Method of Its Cooling, RB Patent No. 19100, published 30.04. 2014, Byull. No. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Charakhovski.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 3, pp. 620–631, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charakhovski, L., Essiptchouk, A., Otani, C. et al. On the Internal Gas Dynamics and Efficiency of a Vortex Water-Vapor Plasma Generator. J Eng Phys Thermophy 90, 586–597 (2017). https://doi.org/10.1007/s10891-017-1604-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1604-z

Keywords

Navigation