Skip to main content
Log in

Integral Method of Boundary Characteristics in Solving the Stefan Problem: Dirichlet Condition

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The integral method of boundary characteristics is considered as applied to the solution of the Stefan problem with a Dirichlet condition. On the basis of the multiple integration of the heat-conduction equation, a sequence of identical equalities with boundary characteristics in the form of n-fold integrals of the surface temperature has been obtained. It is shown that, in the case where the temperature profile is defined by an exponential polynomial and the Stefan condition is not fulfilled at a moving interphase boundary, the accuracy of solving the Stefan problem with a Dirichlet condition by the integral method of boundary characteristics is higher by several orders of magnitude than the accuracy of solving this problem by other known approximate methods and that the solutions of the indicated problem with the use of the fourth–sixth degree polynomials on the basis of the integral method of boundary characteristics are exact in essence. This method surpasses the known numerical methods by many orders of magnitude in the accuracy of calculating the position of the interphase boundary and is approximately equal to them in the accuracy of calculating the temperature profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1975), pp.129–135.

  2. J. M. Hill, One-Dimensional Stefan Problems: An Introduction, Chapman & Hall, London (1989).

    Google Scholar 

  3. V. Alexiades and A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere–Taylor & Francis, Washington (1983).

    Google Scholar 

  4. J. M. Chadam and H. Rasmussen, Free Boundary Problems Involving Solids, Pitman Research Notes in Mathematics Series 281, Longman, Essex (1993).

  5. S. C. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis, Elsevier, Amsterdam (2003).

    MATH  Google Scholar 

  6. V. J. Lunardini, Heat Transfer with Freezing and Thawing, Elsevier, London (1991).

    Google Scholar 

  7. D. A. Tarzia, Explicit and approximated solutions for heat and mass transfer problems with a moving interface, Adv. Topics Mass Transf., Chapter 20, InTech Open Access Publisher, Rijeka (2011), pp. 439–484. Available from: http://www.intechopen.com/articles/show/title/explicit-and-approximated-solutions-for-heat-and-mass-transfer.

  8. Cannon J. R. The One-Dimensional Heat Equation, Addison–Wesley, Menlo Park, CA (1984).

    Book  MATH  Google Scholar 

  9. T. R. Goodman, The heat-balance integral and its application to problems involving a change of phase, Trans. ASME, 80, 335–342 (1958).

    Google Scholar 

  10. T. R. Goodman, Application of integral methods to transient nonlinear heat transfer, in: T. F. Irvine and J. P. Hartnett (Eds.), Advances in Heat Transfer, Vol. 1, Academic Press, New York (1964), pp. 51–122.

  11. B. Noble, Heat balance methods in melting problems, in: J. R. Ockendon and W. R. Hodgkins (Eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon, Oxford (1975).

    Google Scholar 

  12. M. C. Olguin, M. A. Medina, M. C. Sanziel, and D. A. Tarzia, Behavior of the solution of a Stefan problem by changing thermal coefficients of the substance, Appl. Math. Comput., 190, 765–780 (2007).

    MathSciNet  MATH  Google Scholar 

  13. G. Poots, On the application of integral methods to the solution of problems involving the solidification of liquids initially at fusion temperature, Int. J. Heat Mass Transf., 5, No. 6, 525–531 (1962).

    Article  Google Scholar 

  14. S. L. Mitchell and T. G. Myers, Heat balance integral method for one-dimensional finite ablation, J. Thermophys. Heat Transf., 22, No. 3, 508–514 (2008). DOI: 10.2514/1.31755.

    Article  Google Scholar 

  15. S. L. Mitchell and T. G. Myers, Application of heat balance integral methods to one-dimensional phase change problems, Int. J. Differ. Equ., 2012, Article ID 187902 (2012). DOI:10.1155/2012/187902.

  16. E. Case and J. Taysch, An integral equation method for spherical Stefan problems, Appl. Math. Comput., 218, No. 23, 11451–11460 (2012).

    MathSciNet  MATH  Google Scholar 

  17. S. L. Mitchell and T. G. Myers, Application of standard and refined heat balance integral methods to one-dimensional Stefan problems, SIAM Rev., 52, No. 1, 57–86 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. L. Mitchell and T. G. Myers, Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions, Int. J. Heat Mass Transf., 53, No. 17, 3540–3551 (2010).

    Article  MATH  Google Scholar 

  19. T. G. Myers, Optimal exponent heat balance and refined integral methods applied to Stefan problems, Int. J. Heat Mass Transf., 53, Nos. 5–6, 1119–1127 (2010).

  20. T. G. Myers, Optimizing the exponent in the heat balance and refined integral methods, Int. Commun. Heat Mass Transf., 36, No. 2, 143–147 (2009).

    Article  Google Scholar 

  21. N. Sadoun, E. K. Si-Ahmed, P. Colinet, and J. Legrand, On the Goodman heat-balance integral method for Stefan-like problems: further considerations and refinements, Therm. Sci., 13, No. 2, 81–96 (2009).

    Article  Google Scholar 

  22. J. Caldwell and Y. Y. Kwan, Numerical methods for one-dimensional Stefan problems, Commun. Numer. Meth. Eng., 20, No. 7, 535–545 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Caldwell and Y. Y. Kwan, Numerical solution of the Stefan problems by the heat balance integral method, Part I — Cylindrical and spherical geometries, Commun. Numer. Meth. Eng., 16, 535–545 (2000).

    MathSciNet  Google Scholar 

  24. J. Caldwell and Y. Y. Kwan, Starting solutions for the boundary immobilization method, Commun. Numer. Meth. Eng., 21, No. 6, 289–295 (2005).

    Article  MATH  Google Scholar 

  25. N. Sadoun and E. K. Si-Ahmed, A new analytical expression of the freezing constant in the Stefan problem with initial superheat, Proc. 9th Int. Conf. “Numerical Methods in Thermal Problems, USA, Atlanta, GA (1995), Vol. 9, pp. 843–854.

  26. N. Sadoun and E. K. Si-Ahmed, On the double integral method for solving Stefan-like problems, Proc. 1st Int. Thermal and Energy Congress, Marrakesh, Morocco (1993), Vol. 1, pp. 87–91.

  27. N. Sadoun, E. K. Si-Ahmed, and P. Colinet, On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, Appl. Math. Model., 30, No. 6, 531–544 (2006).

    Article  MATH  Google Scholar 

  28. N. Sadoun, E. K. Si-Ahmed, and J. Legrand, On heat conduction with phase change: accurate explicit numerical method, J. Appl. Fluid Mech., 5, No. 1, 105–112 (2012).

    Google Scholar 

  29. V. N. Volkov and V. K. Li-Orlov, A refinement of the integral method in solving the heat conduction equation, Heat Transf. Sov. Res., 2, No. 2, 41–47 (1970).

  30. R. S. Gupta and N. C. Banik, Approximate method for the oxygen diffusion problem, Int. J. Heat Mass Transf., 32, No. 4, 781–783 (1989).

    Article  Google Scholar 

  31. R. S. Gupta and N. C. Banik, Diffusion of oxygen in a sphere with simultaneous absorption, Appl. Math. Model., 14, No. 3, 114–121 (1990).

    Article  MATH  Google Scholar 

  32. R. S. Gupta and N. C. Banik, Constrained integral method for solving moving boundary problems, Comput. Meth. Appl. Mech. Eng., 67, No. 2, 211–221 (1988).

    Article  MATH  Google Scholar 

  33. S. L. Mitchell, Applying the combined integral method to one-dimensional ablation, Appl. Math. Model., 36, No. 1, 127–138 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  34. T. G. Myers and S. L. Mitchell, Application of the combined integral method to Stefan problems, Appl. Math. Model., 35, No. 9, 4281–4294 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  35. S. L. Mitchell, Applying the combined integral method to two-phase Stefan problems with delayed onset of phase change, J. Comp. Appl. Math., 281, 58–73 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  36. S. L. Mitchell and M. Vynnycky, Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems, Appl. Math. Comput., 215, 1609–1621 (2009).

    MathSciNet  MATH  Google Scholar 

  37. J. Caldwell, S. Savovic, and Y. Y. Kwan, Nodal integral end finite difference solution of one-dimensional Stefan problem, J. Heat Transf. (ASME), 125, 523–527 (2003).

    Article  Google Scholar 

  38. S. Kutluay, A. R. Bahadir, and A. Ozdes, The numerical solution of one-phase classical Stefan problem, J. Comput. Appl. Math., 81, No. 1, 134–144 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  39. Rizwan-Uddin, A nodal method for phase change moving boundary problems, Int. J. Comput. Fluid Dynam., No. 11, 211–221 (1999).

  40. V. Voller and M. Cross, An explicit numerical method to track a moving phase change front, Int. J. Heat Mass Transf., 26, 147–150 (1983).

    Article  Google Scholar 

  41. S. L. Mitchell and M. Vynnycky, The oxygen diffusion problem: Analysis and numerical solution, Appl. Math. Model., 39, No. 9, 2763–2776 (2015).

    Article  MathSciNet  Google Scholar 

  42. Whye-Teong Ang, A numerical method on integro-differential formulation for solving a one-dimensional Stefan problem, Numer. Meth. Partial Differ. Equ., 24, No. 3, 939–949 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  43. V. A. Kot, Method of boundary characteristics, J. Eng. Phys. Thermophys., 88, No. 6, 1390–1408 (2015).

    Article  Google Scholar 

  44. V. A. Kot, Boundary characteristics for the generalized heat-conduction equation and their equivalent representations, J. Eng. Phys. Thermophys., 89, No. 4, 985–1007 (2016).

    Article  Google Scholar 

  45. D. Langford, The heat balance integral method, Int. J. Heat Mass Transf., 16, No. 12, 2424–2428 (1973).

    Article  Google Scholar 

  46. T. R. Goodman, The heat-balance integral –– further considerations and refinements, Trans. ASME, Ser. C, No. 1, 83–93 (1961).

  47. A. S. Wood, A new look at the heat balance integral method, Appl. Math. Model., 25, No. 10, 815–824 (2001).

    Article  MATH  Google Scholar 

  48. M. S. El-Genk and A. W. Cronenberg, Some improvements to the solution of Stefan-like problems, Int. J. Heat Mass Transf., 22, 167–177 (1979).

    Article  Google Scholar 

  49. V. Voller and M. Cross, Accurate solutions of moving boundary problems using the enthalpy method, Int. J. Heat Mass Transf., 24, 545–556 (1981).

    Article  MATH  Google Scholar 

  50. J. Caldwell and C. C. Chan, Numerical solution of Stefan problems in annuli, in: C. A. Brebbia (Ed.), Advanced Computational Methods in Heat Transfer VI, B, WIT Press, Southampton and Boston (2000), pp. 215–225.

    Google Scholar 

  51. J. Caldwell and Y. Y. Kwan, Spherical solidification by the enthalpy method and heat balance integral method, in: C. A. Brebbia (Ed.), Advanced Computational Methods in Heat Transfer VII, B, WIT Press, Southampton and Boston (2002), pp. 165–174.

    Google Scholar 

  52. S. Kutluay, A. R. Bahadir, and A. Ozdes, The numerical solution of one-phase classical Stefan problem, J. Comput. Appl. Math., 81, 135–144 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  53. N. Sadoun, P. Colinet, and E. K. Si-Ahmed, New analytical expression for the freezing constant using the refined integral method with cubic approximant, Multiscale Complex Fluid Flows and Interfacial Phenomena Conf. (MULTIFLOW 2010), Brussels, Belgium (2010); https://www.researchgate.net/profile/Nacer_Sadoun/publication/

  54. F. Mosally, A. S. Wood, and A. Al-Fhaid, An exponential heat balance integral method, Appl. Math. Comput., 130, No. 1, 87–100 (2002).

    MathSciNet  MATH  Google Scholar 

  55. R. S. Gupta and D. Kumar, A modified variable time step method for the one-dimensional Stefan problem, Comput. Math. Appl. Mech. Eng., 23, 101–109 (1980).

    Article  MATH  Google Scholar 

  56. R. S. Gupta and D. Kumar, Variable time step methods for one-dimensional Stefan problem with mixed boundary condition, Int. J. Mass Heat Transf., 24, 251–259 (1981).

    Article  MATH  Google Scholar 

  57. S. Kutluay, Numerical schemes for one-dimensional Stefan-like problems with a forcing term, Appl. Math. Comput., 168, No. 2, 1159–1168 (2005).

    MathSciNet  MATH  Google Scholar 

  58. S. Kutluay and A. Elsen, An isotherm migration formulation for one-phase Stefan problem with time-dependent Neumann condition, Appl. Math. Comput., 150, No. 1, 59–67 (2004).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kot.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 5, pp. 1301–1327, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kot, V.A. Integral Method of Boundary Characteristics in Solving the Stefan Problem: Dirichlet Condition. J Eng Phys Thermophy 89, 1289–1314 (2016). https://doi.org/10.1007/s10891-016-1499-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1499-0

Keywords

Navigation