Skip to main content
Log in

Moisture Adsorption Isotherms and Thermodynamic Characteristics of Tannic Acid

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Moisture adsorption isotherms of tannic acid were determined at 5, 15, and 35°C with the use of the static gravimetric method in the range 0.113–0.980 aw (aw is the water activity). It was shown that tannic acid adsorbed more water at 5°C. The experimental data fitted well to the Guggenheim–Anderson–de Boer and Yanniotis–Blahovec equations, giving the corresponding parameters by nonlinear regression. The monolayer moisture content, number of monolayers, and the surface area of sorption were demonstrated to decrease with increasing temperature. Mesopores dominated below the monolayer moisture content followed by the formation of macropores. The variation of the differential enthalpy and entropy with the moisture content showed that water was strongly bound to the surface of tannic acid below the moisture content 5.0 g water/100 g dry basis. The adsorption process was found to be enthalpy-driven; however, it was not spontaneous at a low moisture content, as follows from the enthalpy–entropy compensation theory. The variation of the net integral enthalpy and entropy (at a constant spreading pressure) with the moisture content exhibited maximum and minimum values, respectively. This behavior indicated that water molecules were strongly bound to the tannic acid surface at the moisture content up to its monolayer values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Muzquiz, A. Varela, C. Burbano, C. Cuadrado, E. Guillamón, and M. M. Pedrosa, Bioactive compounds in legumes: pronutritive and antinutritive actions. Implications for nutrition and health, Phytochem. Rev., 11, No. 11, 227–244 (2012).

  2. S. H. Nile and S. W. Park, Edible berries: Bioactive components and their effect on human health, Nutrition, 30, No. 2, 134–144 (2014).

  3. A. A. Bele, V. M. Jadhav, and V. J. Kadam, Potential of tannins: A review, Asian J. Plant Sci., 9, No. 4, 209–214 (2010).

    Article  Google Scholar 

  4. P. Buzzini, P. Arapitsas, M. Goretti, E. Branda, B. Turchetti, P. Pinelli, F. Ieri, and A. Romani, Antimicrobial and antiviral activity of hydrolysable tannins, Mini Rev. Med. Chem., 8, No. 12, 1179–1187 (2008).

    Article  Google Scholar 

  5. C. E. M. da Silva, M. V. F. S. Amorim, M. M. L. de Medeiros, and S. M. de Morais, Use of tannic acid as dough oxidizing and vitamin C protective agent, Cereal Chem., 86, No. 2, 136–138 (2009).

    Article  Google Scholar 

  6. J. Zhang, L. Cheng, L. Jiang, Y. Wang, G. Yang, and G. He, Effects of tannic acid on gluten protein structure, dough properties and bread quality of Chinese wheat, J. Sci. Food Agric., 90, No. 14, 2462–2468 (2010).

    Article  Google Scholar 

  7. S. Rivero, M. A. García, and A. Pinotti, Crosslinking capacity of tannic acid in plasticized chitosan film, Carbohydr. Polym., 82, No. 2, 270–276 (2010).

    Article  Google Scholar 

  8. A. Sionkowska, B. Kaczmarek, and K. Lewandowska, Modification of collagen and chitosan mixtures by the addition of tannic acid, J. Mol. Liq., 199, 318–323 (2014).

    Article  Google Scholar 

  9. A.-S. Hager, K. J. R. Vallons, and E. K. Arendt, Influence of gallic acid and tannic acid on the mechanical and barrier properties of wheat gluten films, J. Agric. Food Chem., 60, No. 24, 6157–6163 (2012).

    Article  Google Scholar 

  10. G. S. Rossa, M. A. Moraes, and L. A. A. Pinto, Moisture sorption properties of chitosan, LWT-Food Sci. Technol., 43, No. 3, 415–420 (2010).

    Article  Google Scholar 

  11. S. Basu, U. S. Shivhare, and S. Muley, Moisture adsorption isotherms and glass transition temperature of pectin, J. Food Sci. Technol., 50, No. 3, 585–589 (2013).

    Article  Google Scholar 

  12. J. Perdomo, A. Cova, A. J. Sandoval, L. García, E. Laredo, and A. J. Müller, Glass transition temperatures and water sorption isotherms of cassava starch, Carbohydr. Polym., 76, No. 2, 305–313 (2009).

    Article  Google Scholar 

  13. M. D. Torres, R. Moreira, F. Chenlo, and M. J. Vázquez, Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums, Carbohydr. Polym., 89, No. 2, 592–598 (2012).

    Article  Google Scholar 

  14. S. K. Bajpai and P. Tiwari, Investigation of moisture sorption behavior of soluble sodium caseinate, Emir. J. Food Agric., 26, No. 5, 399–408 (2014).

    Google Scholar 

  15. I. K. Sawhney, B. C. Sarkar, G. R. Patil, and H. K. Sharma, Moisture sorption isotherms and thermodynamic properties of whey protein concentrate powder from buffalo skim milk, J. Food Process. Pres., 38, No. 4, 1787–1798 (2014).

    Article  Google Scholar 

  16. A. S. Cassini, L. D. F. Marczak, and C. P. Z. Norena, Water adsorption isotherms of texturized soy protein, J. Food Eng., 77, No. 1, 194–199 (2006).

    Article  Google Scholar 

  17. A. H. Al-Muhtaseb, W. A. M. McMinn, and T. R. A. Magee, Moisture sorption isotherm characteristics of food products: A review, Food Bioprod. Process., 80, No. 2, 118–128 (2002).

    Article  Google Scholar 

  18. C. M. Samaniego-Esguerra, I. F. Boag, and G. L. Robertson, Comparison of regression methods for fitting the GAB model to the moisture isotherms of some dried fruit and vegetables, J. Food Eng., 13, No. 2, 115–133 (1991).

    Article  Google Scholar 

  19. L. Červenka, Adsorption of moisture on dried juniper berries (Juniperus communis L.) at various temperatures and properties of sorbed water, J. Food Nutr. Res., 47, No. 3, 131–138 (2008).

  20. L. Červenka, Moisture adsorption characteristics of black currant (Ribes nigrum L.), black elderberry (Sambucus nigra L.) and chokeberry (Aronia melanocarpa, [Minchx.] Ell.) samples at different temperatures, J. Food Process Eng., 34, No. 1, 1419–1434 (2011).

    Article  Google Scholar 

  21. L. Červenka, J. Kubíková, L. Juszczak, and M. Witczak, Moisture sorption isotherms and glass transition temperature of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) roots at 25°C, Food Sci. Technol. Int., 18, No. 1, 81–91 (2012).

    Article  Google Scholar 

  22. A. H. Al-Muhtaseb, W. A. M. McMinn, and T. R. A. Magee, Water sorption isotherms of starch powders. Part 1: Mathematical description of experimental data, J. Food Eng., 61, No. 3, 297–307 (2004).

  23. M. Caurie, Water Activity: Influences in Food Quality, Academic Press, New York (1981).

    Google Scholar 

  24. S. Yanniotis and J. Blahovec, Model analysis of sorption isotherms, LWT-Food Sci. Technol., 42, No. 10, 1688–1695 (2009).

    Article  Google Scholar 

  25. H. A. Pushpadass, F. M. E. Emerald, B. Chaturvedi, and K. J. Rao, Moisture sorption behavior and thermodynamic properties of gulabjamun mix, J. Food Process. Pres., 38, 2192–2200 (2014).

    Article  Google Scholar 

  26. R. R. B. Singh, K. H. Rao, A. S. R. Anjaneyulu, and G. R. Patil, Moisture sorption properties of smoked chicken sausages from spent hen meat, Food Res. Int., 34, Nos. 2–3, 143–148 (2001).

  27. D. Thanuja and M. R. Ravindra, Thermodynamic analysis of moisture sorption characteristics of cheese-puri mix, J. Food Process. Pres., 38, No. 1, 420–429 (2014).

    Article  Google Scholar 

  28. S. K. Velásquez-Gutiérrez, A. C. Figueira, M. E. Rodríguez-Huezo, A. Román-Guerrero, H. Carillo-Navas, and C. Pérez-Alonso, Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.), Carbohydr. Polym., 121, No. 5, 411–419 (2015).

  29. R. Moreira, F. Chenlo, M. D. Torres, and N. Vallejo, Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits, J. Food Eng., 88, No. 4, 514–521 (2008).

    Article  Google Scholar 

  30. C. C. Lago, M. Liendo-Cárdenas, and C. P. Z. Norena, Thermodynamic sorption properties of potato and sweet potato flakes, Food Bioprod. Process., 91, No. 4, 389–395 (2013).

    Article  Google Scholar 

  31. S. Kaya and T. Kahyaoglu, Moisture sorption and thermodynamic properties of safflower petals and tarragon, J. Food Eng., 78, No. 2, 413–421 (2007).

    Article  Google Scholar 

  32. B. Polatoĝlu, A. V. Beşe, M. Kaya, and N. Aktaş, Moisture adsorption isotherms and thermodynamic properties of sucuk (Turkish dry-fermented sausage), Food Bioprod. Process., 89, No. 4, 449–456 (2011).

    Article  Google Scholar 

  33. L. Greenspan, Humidity fixed points of binary saturated aqueous solution, J. Res. Natl. Bur. Stand., Sec. A, 81, 89–96 (1977).

  34. E. Palou, A. López-Malo, and A. Agriz, Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks, J. Food Eng., 31, No. 1, 85–93 (1997).

    Article  Google Scholar 

  35. W. A. M. McMinn, A. H. Al-Muhtaseb, and T. R. A. Magee, Enthalpy–entropy compensation in sorption phenomena of starch materials, Food Res. Int., 38, No. 5, 505–510 (2005).

    Article  Google Scholar 

  36. R. R. Krug, W. G. Hunter, and R. A. Grieger, Enthalpy–entropy compensation. 1. Some fundamental statistical problems associated with the analysis of Van' t Hoff and Arrhenius data, J. Phys. Chem., 80, No. 21, 2335–2341 (1976).

  37. J. Viganó, E. Azuara, V. R. N. Telis, C. I. Beristain, N. Jiménez, and J. Telis-Romero, Role of enthalpy and entropy in moisture sorption behavior of pineapple pulp powder produced by different drying methods, Thermochim. Acta, 528, 63–71 (2012).

    Article  Google Scholar 

  38. H. A. Iglesias, J. Chirife, and P. Viollaz, Thermodynamics of water vapour sorption by sugar beet root, J. Food Technol., 11, No. 1, 91–101 (1976).

    Article  Google Scholar 

  39. S. Brunauer, P. H. Emmet, and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 66, 309–319 (1938).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Červenka.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 5, pp. 1178–1187, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Červenka, L., Cacková, L. Moisture Adsorption Isotherms and Thermodynamic Characteristics of Tannic Acid. J Eng Phys Thermophy 89, 1168–1178 (2016). https://doi.org/10.1007/s10891-016-1480-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1480-y

Keywords

Navigation