Skip to main content
Log in

Boiling of a Liquid on Microstructured Surfaces Under Free-Convection Conditions

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The authors have shown the possibilities of replacing complex and expensive technologies of manufacture of nanorough, microrough, and porous materials for boiling surfaces by a simple and resource-saving technique of mechanical treatment of surfaces: by the strain-cutting method. It has been established that the maximum levels of heat-transfer intensification (as high as four to six times) during the boiling of distilled water and increase (of six times) in the critical heat fluxes are inherent in surfaces obtained by the strain-cutting method with three-dimensional microfinning with spacings of width 120–180 μm at a height of fins of 340–570 μm and their longitudinal spacing of 240–400 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Grimley, I. Mudawar, and F. P. Incropera, Limits to critical heat flux enhancement in a liquid film falling over a structured surface that simulates a microelectronic chip, J. Heat Transf., 110, 535–538 (1988).

    Article  Google Scholar 

  2. T. M. Anderson and I. Mudawar, Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid, J. Heat Transf., 111, 752–759 (1989).

    Article  Google Scholar 

  3. M. Arik, A. Bar-Cohen, and S. M. You, Enhancement of pool boiling critical heat flux in dielectric liquids by microporous coatings, Int. J. Heat Mass Transf., 50, 997–1009 (2007).

    Article  Google Scholar 

  4. N.-H. Kim and K.-K. Choi, Nucleate pool boiling on structured enhanced tubes having pores with connecting gaps, Int. J. Heat Mass Transf., 44, 17–28 (2001).

    Article  Google Scholar 

  5. K.-H. Chu, R. Enright, and E. N. Wang, Structured surfaces for enhanced pool boiling heat transfer, Appl. Phys. Lett., 100, No. 24, 241603–241603–4 (2012).

  6. M. Zhang and K. Lian, Using bulk micromachined structures to enhance pool boiling heat transfer, Microsyst. Technol., 14, 1499–1505 (2008).

    Article  Google Scholar 

  7. J. Xu, M. J. Yang, J. L. Xu, and X. B. Ji, Vertically oriented TiO2 nanotube arrays with different anodization times for enhanced boiling heat transfer, Sci. China: Technol. Sci., 55, No. 8, 2184–2190 (2012).

    Article  Google Scholar 

  8. H. J. Jo, S. H. Kim, H. Kim, J. Kim, and M. H. Kim, Nucleate boiling performance on nano/microstructures with different wetting surfaces, Nanoscale Res. Lett., No. 7, 242–242–9 (2012).

  9. M. A. Kedzierski, Calorimetric and Visual Measurements of R123 Pool Boiling on Four Enhanced Surfaces, U.S. Department of Energy, NISTIR 5732 (1995).

  10. M. A. Kedzierski, Enhancement of R123 pool boiling by addition of N-hexane, Enhanced Heat Transf., 6, 343–355 (1999).

    Article  Google Scholar 

  11. T. J. Hendricks, S. Krishnan, C. Choi, C.-H. Chang, and B. Paul, Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper, Int. J. Heat Mass Transf., 53, 3357–3365 (2010).

    Article  Google Scholar 

  12. I. Sarbu and E. S. Valea, Correlations for enhanced boiling heat transfer on modified surfaces tubes, Int. J. Energy Environ., 5, No. 3, 444–451 (2011).

    Google Scholar 

  13. I. A. Popov, N. N. Zubkov, S. I. Kas’kov, and A. V. Shchelchkov, Heat transfer during the boiling of liquid on microstructured surfaces. Part 1: Heat transfer during the boiling of water, Therm. Eng., 60, No. 3, 157–165 (2013).

    Article  Google Scholar 

  14. I. A. Popov, N. N. Zubkov, S. I. Kas’kov, and A. V. Shchelchkov, Heat transfer during the boiling of liquid on microstructured surfaces. Part 2: Visualization of boiling and critical heat fluxes, Therm. Eng., 60, No. 4, 285–294 (2013).

    Article  Google Scholar 

  15. Yu. F. Gortyshov, I. A. Popov, N. N. Zubkov, S. I. Kas’kov, and A. V. Shchelchkov, Boiling of water on microstructured surfaces, Tr. Akademénergo, No. 1, 14–31 (2012).

  16. I. A. Popov, A. V. Shchelchkov, N. N. Zubkov, R. A. Lei, and Y. F. Gortyshov, Boiling heat transfer of different liquids on microstructured surfaces, Russ. Aeronaut., 57, No. 4, 395–401 (2014).

    Article  Google Scholar 

  17. I. A. Popov and A. V. Shchelchkov, Boiling of various liquids on microstructurized surfaces, J. Eng. Phys. Thermophys., 87, No. 6, 1420–1432 (2014).

    Article  Google Scholar 

  18. J. C. Passos and R. F. Reinaldo, Analysis of pool boiling within smooth and grooved tubes, Exp. Therm. Fluid Sci., 22, 35–44 (2000).

    Article  Google Scholar 

  19. R. Chen, M.-C. Lu, V. Srinivasan, Z. Wang, H. H. Cho, and A. Majumdar, Nanowires for enhanced boiling heat transfer, Nano Lett., 9, No. 2, 548–553 (2009).

    Article  Google Scholar 

  20. C. Li, Z. Wang, P.-I. Wang, Y. Peles, N. Koratkar, and G. P. Peterson, Nanostructured copper interfaces for enhanced boiling, Small –– Nano Micro, 4, No 8, 1084–1088 (2008).

  21. W. R. McGillis, J. S. Fitch, W. R. Hamburgen, and V. P. Carey, Pool boiling enhancement techniques for water at low pressure, IEEE/CHMT Semiconductor Thermal and Temperature Management (Semi-Therm) Symposium, February 12–14, 1991, Phoenix, AZ, (1991), Research Report 90/9.

  22. J. M. Saiz Jabardo, An overview of surface roughness effects on nucleate boiling heat transfer, The Open Transp. Phenom. J., No. 2, 24–34 (2010).

  23. O. N. Cora, D. Min, M. Koc, and M. Kaviany, Microscale-modulated porous coatings: fabrication and pool-boiling heat transfer performance. J. Micromech. Microeng., 20, 035020–035020–9 (2010).

  24. D. Min, G. S. Hwang, Y. Usta, O. N. Cora, M. Koc, and M. Kaviany, 2-D and 3-D modulated porous coatings for enhanced pool boiling, Int. J. Heat Mass Transf., 52, 2607–2613 (2009).

    Article  Google Scholar 

  25. C. Li and G. P. Peterson, Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces, J. Heat Transf., 129, 1465–1475 (2007).

    Article  Google Scholar 

  26. C. Li and G. P. Peterson, Geometric effects on critical heat flux on horizontal microporous coatings, J. Thermophys. Heat Transf., 24, No. 3, 449–455 (2010).

    Article  Google Scholar 

  27. G. Moreno, S. Narumanchi, and C. King, Pool boiling heat transfer characteristics of HFO-1234yf with and without microporous-enhanced surfaces, Proc. ASME 2011 Int. Mech. Eng. Congress & Exposition IMECE2011, November 11–17, 2011, Denver, Colorado, USA (2011), Paper IMECE2011–64002.

  28. J. S. Mehta and S. G. Kandlikar, Pool boiling heat transfer enhancement over cylindrical tubes with water at atmospheric pressure. Part I: Experimental results for circumferential rectangular open microchannels, Int. J. Heat Mass Transf., 64, 1205–1215 (2013).

    Article  Google Scholar 

  29. H. S. Ahn, V. Sathyamurthi, and D. Banerjee, Pool boiling experiments on a nano-structured surface, IEEE Trans. Compon. Packag. Technol., 32, No 1, 156–165 (2009).

    Article  Google Scholar 

  30. C. K. Yu, D. C. Lu, and T. C. Cheng, Pool boiling heat transfer on artificial microcavity surfaces in dielectric fluid FC-72, J. Micromech. Microeng., 16, 2092–2099 (2006).

    Article  Google Scholar 

  31. A. S. Moita, E. Teodori, and A. L. N. Moreira, Enhancement of pool boiling heat transfer by surface microstructuring, J. Phys.: Conf. Series, 395, 012175–012175–9 (2012).

  32. E. Teodori, A. S. Moita, and A. L. N. Moreira, Empirical correlations between bubble dynamics and heat transfer coefficient for pool boiling over micro-textured surfaces, Proc. 17th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, 7–10 July, 2014, Lisbon, Portugal (2014).

  33. S. Fischer, E. M. Slomski, P. Stephan, and M. Oechsner, Enhancement of nucleate boiling heat transfer by microstructured chromium nitride surfaces, J. Phys.: Conf. Ser., 395, 012128–012128–8 (2012).

  34. A. Zou and S. C. Maroo, Critical height of micro/nanostructures for pool boiling heat transfer enhancement, Appl. Phys. Lett., 103, 221602–221602–5 (2013).

  35. O. A. Volodin, A. N. Pavlenko, N. I. Pecherkin, and V. S. Serdyukov, Evaporation and boiling of the film of a binary mixture of freons on a vertical cylinder with a reticular coating, Vestn. NGU, Ser. Fiz., 9, No. 1, 70–78 (2014).

  36. O. A. Volodin, A. N. Pavlenko, and N. I. Pecherkin, Heat transfer and wave characteristics of a binary freon film flowing over a three-dimensional textured surface, High Temp., 51, No. 6, 785–794 (2013).

    Article  Google Scholar 

  37. E. Demir, T. Izci, A. S. Alagoz, T. Karabacak, and A. Kos, Effect of silicon nanorod length on horizontal nanostructured plates in pool boiling heat transfer with water, Int. J. Therm. Sci., 82, 111–121 (2014).

    Article  Google Scholar 

  38. A. Kalani and S. G. Kandlikar, Enhanced pool boiling with ethanol at subatmospheric pressures for electronics cooling, J. Heat Transf., 135, 111002 –111002–7 (2013).

  39. Y.-W. Lu and S. G. Kandlikar, Nanoscale surface modification techniques for pool boiling enhancement –– a critical review and future directions, Heat Transf. Eng., 32, No. 10, 827–842 (2011).

    Article  Google Scholar 

  40. J. P. McHale and S. V. Garimella, Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces, Int. J. Multiphase Flow, 36, No. 4, 249–260 (2010).

    Article  Google Scholar 

  41. C. Ramaswamy, Y. Joshi, W. Nakayama, and W. B. Johnson, High-speed visualization of boiling from an enhanced structure, Int. J. Heat Mass Transf., 45, 4761–4771 (2002).

    Article  Google Scholar 

  42. A. E. Bergles, M. K. Jensen, E. F. C. Somerscales, L. Curcio Jr., and R. R. Trewin, Enhanced Shell-and-Tube Heat Exchangers for the Power and Process Industries, Report HTL-14, Contract No. DE-FCOT-881D12772, Rensselaer Polytechnic Institute, New York (1992).

  43. R. L. Webb and N.-H. Kim, Principles of Enhanced Heat Transfer, 2nd edn., Taylor & Francis, New York (2005).

  44. M. E. Poniewski and J. R. Thome, Nucleate Boiling on Micro-Structured Surfaces, Heat Transfer Research Inc., Lausanne–Warsaw/College Station, TX (2008).

  45. A. Ustinov, Nucleate Pool Boiling on Microstructured Surfaces, Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften, Universität Paderborn, Germany (2008).

  46. N. N. Zubkov, A. I. Ovchinnikov, and O. V. Kononov, Manufacture of new-class heat-transfer surfaces by strain cutting, Vestn. MGU, No. 4, 79–82 (1993).

  47. M. A. Mikheev, Fundamentals of Heat Transfer [in Russian], 3rd edn., Gosénergoizdat, Moscow (1956).

  48. B. V. Dzyubenko, Yu. A. Kuzma-Kichta, A. I. Leontiev, I. I. Fedik, and L. P. Kholpanov, Intensification of Heat and Mass Transfer on a Macro-, Micro-, and Nanoscale [in Russian], FGUP “TsNIIATOMINFORM,” Moscow (2008).

  49. Yu. V. Polezhaev and S. A. Kovalev, Intensification of boiling heat transfer, Teplofiz. Vys. Temp., 30, No. 5, 1013–1024 (1992).

    Google Scholar 

  50. G. I. Bobrovich, I. I. Gogonin, and S. S. Kutateladze, Influence of the dimension of the heating surface on the critical heat flux in pool boiling of a liquid, Prikl. Mekh. Tekh. Fiz., No. 4, 137–138 (1964).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Zubkov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 5, pp. 1160–1169, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchelchkov, A.V., Popov, I.A. & Zubkov, N.N. Boiling of a Liquid on Microstructured Surfaces Under Free-Convection Conditions. J Eng Phys Thermophy 89, 1152–1160 (2016). https://doi.org/10.1007/s10891-016-1478-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1478-5

Keywords

Navigation