Skip to main content
Log in

“Pressure Blocking” Effect in the Growing Vapor Bubble in a Highly Superheated Liquid

  • HEAT AND MASS TRANSFER IN PHASE TRANSFORMATIONS
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The problem on the growth of a vapor bubble in a liquid whose superheating enthalpy exceeds the phase transition heat has been considered. A physical model of the “pressure blocking” in the bubble is presented. The problem for the conditions of the experiment on the effervescence of a butane drop has been solved numerically. An algorithm for constructing an analytical solution of the problem on the bubble growth in a highly superheated liquid is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Prosperetti, Bubbles, Phys. Fluids, 16, No. 6, 1852−1865 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Lohse, Bubble puzzles, Nonlinear Phenom. Complex Syst., 9, No. 2, 125−132 (2006).

    Google Scholar 

  3. J. Straub, Boiling heat transfer and bubble dynamics in microgravity, Adv. Heat Transf., 35, 57–172 (2001).

    Article  Google Scholar 

  4. G. Picker, Nicht-Gleichgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen, Dissertation, Technische Universität München, München (1998).

  5. Yu. B. Zudin, Binary schemes of vapor bubble growth, J. Eng. Phys. Thermophys., 88, No. 3, 575–586 (2015).

    Article  Google Scholar 

  6. D. A. Labuntsov, The current ideas about the nucleate boiling mechanism, in: Heat Transfer and Physical Hydrodynamics [in Russian], Nauka, Moscow (1974), pp. 98−115.

  7. L. E. Scriven, On the dynamics of phase growth, Chem. Eng. Sci., 10, Nos. 1−2, 1−14 (1959).

  8. M. S. Plesset and S. A. Zwick, The growth of vapor bubbles in superheated liquids, J. Appl. Phys., 25, No. 4, 493–500 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  9. D. A. Labuntsov and V. V. Yagov, Mechanics of Two-Phase Systems [in Russian], Izd. MÉI, Moscow (2007).

  10. B. B. Mikic, W. M. Rosenow, and P. Griffith, On bubble growth rates, Int. J. Heat Mass Transf., 13, No. 4, 657–666 (1970).

    Article  Google Scholar 

  11. A. A. Avdeev and Yu. B. Zudin, Vapor bubble growth in the near-spinodal region within the framework of the generalized inertial-thermal scheme, Teplofiz. Vys. Temp., 40, No. 6, 971–978 (2002).

    Google Scholar 

  12. S. P. Aktershev, Vapor bubble growth in a limitedly superheated liquid, Teplofiz. Aéromekh., 12, No. 3, 445–457 (2005).

    Google Scholar 

  13. V. P. Skripov, Metastable Liquid [in Russian], Nauka, Moscow (1972).

  14. A. V. Korabel’nikov, V. E. Nakoryakov, and I. R. Shraiber, Account of the nonequilibrium evaporation in the problems of the vapor bubble dynamics, Teplofiz. Vys. Temp., 19, No. 4, 797–801 (1981).

    Google Scholar 

  15. M. P. Vukalovich and I. I. Novikov, Equation of State of Real Gases [in Russian], Gosénergoizdat, Moscow (1948).

  16. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th edn., McGraw-Hill Education, Singapore (1988).

  17. I. I. Novikov, Thermodynamics of Spinodal and Phase Transitions [in Russian], Nauka, Moscow (2000).

  18. V. G. Boiko, Kh. J. Mogel’, V. M. Sysoev, and A. V. Chalyi, Characteristic features of the metastable states in liquid–vapor phase transitions, Usp. Fiz. Nauk, 161, No. 2, 77–111 (1991).

  19. I. Thormählen, Grenze der Überhitzbarkeit von Flüssigkeiten: Keimbildung und Keimaktivierung, Fortschritt-Berichte VDI. Verfahrenstechnik, VDI-Verlag, Düsseldorf (1985), Reihe 3, Nr. 104.

  20. S. Wiesche, Modellbildung und Simulation thermofluidischer Mikroaktoren zur Mikrodosierung, Fortschritt-Berichte VDI. Wärmetechnik/Kältetechnik, VDI-Verlag, Düsseldorf (2001), Reihe 19, Nr. 131.

  21. J. E. Shepherd and B. Sturtevant, Rapid evaporation at the superheat limit, J. Fluid Mech., 121, 379–402 (1982).

    Article  Google Scholar 

  22. B. Weigand, Analytical Methods for Heat Transfer and Fluid Flow Problems, 2nd edn., Springer, Berlin (2015).

  23. D. A. Labuntsov and V. V. Yagov, Dynamics of vapor bubbles in the low-pressure region, Tr. MÉI, Issue 268, 16−32 (1975).

  24. V. V. Yagov, On the limiting law of vapor bubble growth in the region of very low pressures (high Jacob numbers), Teplofiz. Vys. Temp., 26, No. 2, 335−341 (1988).

    Google Scholar 

  25. T. G. Theofanous, T. G. Bohrer, M. C. Chang, and P. D. Patel, Experiments and universal growth relations for vapor bubbles with microlayers, J. Heat Transf., 100, 41–48 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Zudin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 5, pp. 1148–1159, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zudin, Y.B., Zenin, V.V. “Pressure Blocking” Effect in the Growing Vapor Bubble in a Highly Superheated Liquid. J Eng Phys Thermophy 89, 1141–1151 (2016). https://doi.org/10.1007/s10891-016-1477-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1477-6

Keywords

Navigation