Skip to main content

Deposition of Functional Coatings from an Acetylene-Containing Plasma at Atmospheric Pressure

Properties of thin coatings formed on polymer and glass substrates by plasma-enhanced chemical vapor deposition from a mixture of nitrogen with acetylene at atmospheric pressure were investigated. It was established that chemically stable transparent films with a mass ratio of fixed carbon and nitrogen C:N ~ 2:1 are formed on the surface of these substrates. When the deposition time was increased, arrays of dendrite-like structures were formed on the substrates.

This is a preview of subscription content, access via your institution.


  1. H. Yasuda, M. O. Bumgarner, H. C. Marsh, and N. Morosoff, Plasma polymerization of some organic compounds and properties of the polymers, J. Polym. Sci.: Polym.Chem. Ed., 14, No. 1, 195–224 (1976).

    Google Scholar 

  2. H. Yasuda and T. Hirotsu, Some aspects of plasma copolymerization of acetylene with N2 and/or water, J. Polym. Sci.: Polym. Chem. Ed., 15, No. 15, 2749–2771 (1977).

    Google Scholar 

  3. S. F. Durrant, N. Marçal, S. G. Castro, R. C. G. Vinhas, M. A. Bica De Moraes, and J. H. Nicola, Mechanisms of polymer film deposition from r.f. discharges of acetylene, nitrogen and helium mixtures, Thin Solid Films, 259, No. 2, 139–145 (1995).

    Article  Google Scholar 

  4. E. Evangelou, N. Konofaos, S. Logothetidis, and M. Gioti, Electrical behaviour of metal/a-C/Si and metal/CN/Si devices, Carbon, 37, No. 5, 871–876 (1999).

    Article  Google Scholar 

  5. S. Kumar, N. Dwivedi, C. M. S. Rauthan, and O. S. Panwar, Properties of nitrogen diluted hydrogenated amorphous carbon (n-type a-C:H) films and their realization in n-type a-C:H/p-type crystalline silicon heterojunction diodes, Vacuum, 84, No. 7, 882–889 (2010).

    Article  Google Scholar 

  6. K.-S. Chen, T.-C. Wei, M.-S. Li, H.-M. Wu, T.-P. Tang, C.-Y. Wang, and Y.-C. Tu, Chemical characterization of plasma-polymerized films from acetylene and nitrogen-containing mixtures and their ethanol vapor sensitivity, Radiat. Phys. Chem., 76, No. 6, 941–950 (2007).

    Article  Google Scholar 

  7. E. Kovačević, J. Berndt, I. Stefanović, H.-W. Becker, C. Godde, Th. Strunskus, J. Winter, and L. Boufendi, Formation and material analysis of plasma polymerized carbon nitride nanoparticles, J. Appl. Phys., 105, 104910–104910-8 (2009); DOI 10.1063/1.3129318.

    Article  Google Scholar 

  8. P.-L. Girard-Lauriault, P. Desjardins, W. E. S. Unger, A. Lippitz, and M. R. Wertheimer, Chemical characterization of nitrogen-rich plasma-polymer films deposited in dielectric barrier discharges at atmospheric pressure, Plasma Process. Polym., 5, No. 10, 631–644 (2008).

    Article  Google Scholar 

  9. V. G. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physical Chemistry of Barrier Discharge [in Russian], Izd. MGU, Moscow (1989).

    Google Scholar 

  10. M. Benes, J. Peska, and O. Wichterle, Polydicyanoacetylene: preparation and properties, J. Polym. Sci.: Part C, 4, No. 2, 1377–1383 (2007); DOI: 10.1002/polc.5070040249.

    Google Scholar 

  11. J. Kieser and M. Neusch, Industrial microwave plasma polymerization, Thin Solid Films, 118, No. 2, 203–210 (1984).

    Article  Google Scholar 

  12. I. Retzko, J. F. Friedrich, A. Lippitz, and W. E. S. Unger, Chemical analysis of plasma-polymerized films: The application of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (NEXAFS) and Fourier transform infrared spectroscopy (FTIR), J. Electron Spectrosc. Relat. Phenom., 121, Nos. 1–3, 111–129 (2001).

    Article  Google Scholar 

  13. H. Yasuda, A. K. Sharma, and T. Yasuda, Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis, J. Polym. Sci. Polym. Phys. Ed., 9, 1285–1291 (1981).

    Article  Google Scholar 

  14. J. Wang, S. E. Woodcock, S. M. Buck, C. Chen, and Z. Chen, Different surface-restructuring behaviors of poly(methacrylate)s detected by SFG in water, J. Am. Chem. Soc., 123, No. 38, 9470–9471 (2001).

    Article  Google Scholar 

  15. Z. Chen, Sum frequency generation vibrational spectroscopy studies of molecular orientation at interfaces, in: J. A. Schwarz, C. I. Contescu, and K. Putyera (Eds.), Dekker Encyclopedia of Nanoscience and Nanotechnology, Vol. 5, Marcel Dekker Inc., New York (2004). P. 3749.

  16. L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett., 11, 3190–3196 (2011).

    Article  Google Scholar 

  17. A. C. Ferrari and J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond, Philos. Trans. R. Soc. Lond., 362, 2477–2512 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. V. Plevako.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 2, pp. 457–463, March–April, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plevako, F.V., Gorbatov, S.V., Davidovich, P.A. et al. Deposition of Functional Coatings from an Acetylene-Containing Plasma at Atmospheric Pressure. J Eng Phys Thermophy 89, 471–477 (2016).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • high-frequency barrier gaseous discharge
  • polymerization in plasma
  • dicyanoacetylene
  • thin-film coating
  • dendrite-like structures