Skip to main content
Log in

Electromagnetic Effects on Wave Propagation in an Isotropic Micropolar Plate

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The generalized theory of thermoelasticity is applied to study the propagation of plane harmonic waves in an infinitely long, isotropic, micropolar plate in the presence of a uniform magnetic field. The present analysis also includes the thermal relaxation time, electric displacement current, and the coupling of heat transfer and microrotation of the material. To determine the effect of the presence of thermal as well as magnetic fields on the phase velocity, two potential functions are used, and more general dispersive relations are obtained for symmetric and antisymmetric modes. The results for the cases of coupled thermoelasticity, magnetoelasticity, micropolar thermoelasticity, and classical micropolar elasticity as special cases are derived. The changes in the phase velocity and attenuation coefficient with the wave number are shown graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Eringen, Theory of micropolar continua, in: Proc. Ninth Midwestern Mechanics Conf., Wisconsin, August 16–18, Wiley, New York (1965).

  2. A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple microelastic solids — II, Int. J. Eng. Sci., 2, 389–404 (1964).

    Article  MathSciNet  Google Scholar 

  3. A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple microelastic solids — I, Int. J. Eng. Sci., 2, 189–203 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. C. Eringen, Linear theory of micropolar elasticity, J. Math. Mech., 15, 909–923 (1966).

    MathSciNet  MATH  Google Scholar 

  5. A. C. Eringen, Linear theory of nonlocal microelasticity and dispersion of plane waves, Lett. Appl. Eng. Sci., 1, 11–17 (1973).

    Google Scholar 

  6. A. C. Eringen, Microcontinuum Field Theories: Foundation and Solids, Springer-Verlag, New York (1998).

    Google Scholar 

  7. L. Knopoff, The interaction between elastic wave motions and a magnetic field in electrical conductor, J. Geophys. Res., 60, 441–456 (1955).

    Article  Google Scholar 

  8. J. W. Dunkin and A. C. Eringen, Propagation of waves in an electromagnetic elastic solid, Int. J. Eng. Sci., 1, 461–495 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Kaliski and T. Petykiewich, Dynamical equations of motion coupled with the field of temperatures and resolving functions for elastic and inelastic bodies in the magnetic field, Proc. Vibr. Probl., 1, 81–94 (1960).

    Google Scholar 

  10. A. Nayfeh and N. S. Nasser, Electromagnetic thermoelastic plane waves in solids with thermal relaxation, J. Appl. Mech., Ser. E, 39, 108–113 (1973).

    Article  Google Scholar 

  11. G. Paria, On magneto-thermoelastic plane waves, Proc. Cambridge Philos. Soc., 58, 527–531 (1962).

    Article  MathSciNet  Google Scholar 

  12. R. K. T. Hsieh, Mechanical modelling of new electromagnetic materials, in: Proc. IUTAM Symposium, Stockholm, 1990, pp. 461–468.

  13. M. A. Ezzat, M. I. Othman, and A. S. El-Karamany, Electromagneto-thermoelastic plane waves with two relaxation times in a medium of perfect conductivity, J. Therm. Stresses, 24, 411–432 (2001).

    Article  Google Scholar 

  14. H. H. Sherief and H. M. Youssef, Short time solution for a problem in magneto-thermoelasticity with thermal relaxation, J. Therm. Stresses, 27, 537–559 (2004).

    Article  Google Scholar 

  15. N. C. Das, A. Lahiri, and R. R. Giri, Eigenvalue approach to generalized thermoelasticity, Ind. J. Pure Appl. Math., 28, 1573–1594 (1997).

    MathSciNet  MATH  Google Scholar 

  16. J. N. Sharma, On the propagation of thermoelastic waves in homogeneous isotropic plates, Ind. J. Pure Appl. Math., 32, 1329–1341 (2001).

    MATH  Google Scholar 

  17. J. N. Sharma and M. Pal, Rayleigh–Lamb waves in magneto-thermoelastic homogeneous isotropic plate, Int. J. Eng. Sci., 42, 137–155 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. C. Eringen and G. A. Maugin, Electrodynamics of Continua, Springer-Verlag, New York (1990).

    Book  Google Scholar 

  19. H. Parkus, Magneto-Thermo-Elasticity, Springer, New York (1972).

    Book  Google Scholar 

  20. K. F. Graff, Wave Motion in Elastic Solids, Dover Publications Inc., New York (1991).

    Google Scholar 

  21. W. Nowacki, Thermoelasticity, Pergamon Press, New York (1962).

    Google Scholar 

  22. J. L. Nowinski, Theory of Thermoelasticity with Applications, Sijthoff & Noordhoff International Publishers, The Netherlands (1978).

    Book  MATH  Google Scholar 

  23. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, John Wiley and Sons, New York (1960).

    MATH  Google Scholar 

  24. R. Kumar and P. Ailawalia, Deformation due to time harmonic sources in micropolar thermoelastic medium possessing cubic symmetry with two relaxation times, Appl. Math. Mech., 27, 781–792 (2006).

    Article  MATH  Google Scholar 

  25. R. Kumar and P. Ailawalia, Mechanical/thermal sources in a micropolar thermoelastic medium possessing cubic symmetry without energy dissipation, Int. J. Thermophys., 28, 342–367 (2007).

    Article  Google Scholar 

  26. R. Kumar and G. Partap, Rayleigh–Lamb waves in micropolar isotropic elastic plate, Appl. Math. Mech., 27, 1049–1059 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Kumar and T. Kansal, Propagation of Rayleigh waves on free surface of transversely isotropic generalized thermoelastic diffusion, Appl. Math. Mech., 29, 1451–1462 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Singh and R. Kumar, Wave propagation in a generalized thermo-microstretch elastic solid, Int. J. Eng. Sci., 36, 891–912 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  29. K. M. Rao, Longitudinal wave propagation in a micropolar wave guide, Int. J. Eng. Sci., 26, 135–141 (1988).

    Article  Google Scholar 

  30. H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solid, 15, 299–309 (1967).

    Article  MATH  Google Scholar 

  31. R. D. Gauthier, Experimental investigations of micropolar media, in: Mechanics of Micropolar Media, O. Brulin, R. K. T. Hsieh (Eds.), World Scientific, Singapore, 1982, pp. 395–463.

    Chapter  Google Scholar 

  32. R. Kumar and N. Sharma, Propagation of waves in micropolar viscoelastic generalized thermoelastic solids having interfacial imperfections, Theor. Appl. Fract. Mech., 50, 226–234 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shaw.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 6, pp. 1498–1511, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, S., Mukhopadhyay, B. Electromagnetic Effects on Wave Propagation in an Isotropic Micropolar Plate. J Eng Phys Thermophy 88, 1537–1547 (2015). https://doi.org/10.1007/s10891-015-1341-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1341-0

Keywords

Navigation