Skip to main content
Log in

Turbulent Boundary Layer on a Finely Perforated Surface Under Conditions of Air Injection at the Expense of External Flow Resources

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Wood, Impact of advanced aerodynamic technology on transportation energy consumption, SAE Int. TP-2004-01-1306 (2004).

  2. A. Abbas, J. de Vicente, and E. Valero, Aerodynamic technologies to improve aircraft performance, Aerospace Sci. Technol., 28, 100–132 (2013).

    Article  Google Scholar 

  3. W. K. Lord, S. H. Zysman, T. G. Tillman, and W. A. Johnson, Laminar Flow Control Experiment on a Large-Scale Nacelle Model, Pratt & Whitney Report PWA 6420-55, December 1995.

  4. B. Barry, S. J. Parke, N. W. Brown, H. Riedel, and M. Sitzmann, The flight testing of natural and hybrid laminar flow nacelles, ASME Paper 94-GT-408, June 1994.

  5. D. Hwang, Review of research into the concept of the microblowing technique for turbulent skin friction reduction, Prog. Aerospace Sci., 40, 559–575 (2004).

    Article  Google Scholar 

  6. T. G. Tillman and D. P. Hwang, Drag reduction on a large-scale nacelle using a microblowing technique, 37th AIAA Aerospace Sci. Meeting and Exhibit, Reno, NV, AIAA Paper 1999-0130, January 1999.

  7. V. I. Kornilov and A. V. Boiko, Efficiency of air microblowing through microperforated wall for flat plate drag reduction, AIAA J., 50, No. 3, 724−732 (2012).

    Article  Google Scholar 

  8. Y. L. Lin, M. K. Chyu, T. I. P. Shih, B. P. Willis, and D. P. Hwang, Skin friction reduction through micro-blowing, AIAA Paper, No. 0359 (1998).

  9. J. Li, C.-H. Lee, L. Jia, and X. Li, Numerical study on the fl ow control by micro-blowing, 47th AIAA Aerospace Sci. Meeting, Orlando, FL, AIAA 2009-779, January 2009.

  10. F. A. P. Silva, D. O. A. Cruz, and C. C. Pellegini, Velocity and temperature distributions in compressible turbulent boundary layers with heat and mass transfer, Int. J. Heat Mass Transf., 38 (13), 2507–2515 (1995).

    Article  MATH  Google Scholar 

  11. J. Bellettre, F. Bataille, and A. Lallemand, Prediction of thermal protection of walls by blowing with different fluids, Int. J. Therm. Sci., 38, 492–500 (1999).

    Article  Google Scholar 

  12. S. S. Kutateladze and A. I. Leontiev, Heat/Mass Transfer and Friction in a Turbulent Boundary Layer [in Russian], Énergoatomizdat, Moscow (1985).

    Google Scholar 

  13. V. I. Kornilov, A. V. Boiko, and I. N. Kavun, Control of a turbulent boundary layer by air injection on account of the external fl ow resources, Teplofiz. Aéromekh., 22, No. 4, 429–443 (2015).

    Google Scholar 

  14. D. Hwang (I. Grant Ed.), Experimental study of characteristics of micro-hole porous skins for turbulent skin friction reduction, in: Proc. 23rd Congr. Int. Council Aeronautical Sci., Optimage Ltd., Toronto, Canada (2002), pp. 2101.1−2101.7.

  15. A. V. Bazovkin, V. M. Kovenya, V. I. Kornilov, A. S. Lebedev, and A. N. Popkov, Effect of micro-blowing of a gas from the surface of a flat plate on its drag, J. Appl. Mech. Tech. Phys., 53, No. 4, 490–499 (2012).

    Article  MATH  Google Scholar 

  16. A. V. Boiko and V. I. Kornilov, Measurement of the local coefficient of surface friction by a hot-wire anemometer, Teplofiz. Aéromekh., 17, No. 4, 613−623 (2010).

    Google Scholar 

  17. B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London–New York (1972).

    MATH  Google Scholar 

  18. F. M. White, Viscous Fluid Flow, 2nd edn., McGraw-Hill, New York (1991).

    Google Scholar 

  19. D. E. Coles and E. A. Hirst (Eds.), Computation of turbulent boundary layer, in: Proc. Stanford Conf. AFOSR-IFP, Vol. 2, Stanford (1968−1969).

  20. M. V. Zagarola and A. J. Smits, A new mean velocity scaling for turbulent boundary layers, in: Proc. 1998 ASME Fluids Engineering Division Summer Meeting, June 21−25, Washington D. C. (1998), pp. 1−6.

  21. R. B. Cal and L. Castillo, Similarity analysis for transpired turbulent boundary layers subjected to external pressure gradients, AIAA J., 43, No. 9, 1913−1922 (2005).

    Article  Google Scholar 

  22. V. I. Kornilov and D. K. Mekler, Characteristic features of the development of a nonequilibrium boundary layer downstream of a cylinder immersed in a transverse flow, Izv. Sib. Otd. Ross. Akad. Nauk SSSR, Ser. Tekh. Nauk, Issue 6, 38–46 (1989).

  23. I. E. Idel′chik, Handbook on Hydraulic Resistances [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kornilov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 6, pp. 1448–1459, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornilov, V.I., Boiko, A.V. & Kavun, I.N. Turbulent Boundary Layer on a Finely Perforated Surface Under Conditions of Air Injection at the Expense of External Flow Resources. J Eng Phys Thermophy 88, 1500–1512 (2015). https://doi.org/10.1007/s10891-015-1336-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1336-x

Keywords

Navigation