Skip to main content
Log in

Influence of Microwaves on the Thermal Conditions of a "Polymer–Semiconductor–Composite" System

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An Erratum to this article was published on 24 November 2016

A numerical analysis of the influence of microwaves on the thermal conditions of elements of electronic equipment (EE) has been carried out. Investigations have shown that the temperature field of the ″polymer–semiconductor–composite″ system under the action of microwaves is nonuniform. It has been established that under rather typical operating conditions with increasing electric field intensity there is a considerable increase (from 362 to 387 K) in the maximum temperature of the modeled object. Such a strong influence of microwaves on the thermal conditions of the ″polymer–semiconductor–composite″ system is comparable to the increase in the ambient temperature by 20 K or the increase in the heat release of the internal source by 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Klyuchnik, Yu. A. Pirogov, and A. V. Solodov, Reversible failures of integrated microcircuits in radio-frequency radiation fields, Zh. Radioélektron., No. 1, 3-24 (2013).

  2. B. S. Tilley, On microchannel shapes in liquid-cooled electronics applications, Int. J. Heat Mass Transf., 62 (1), 163-173 (2013).

    Article  Google Scholar 

  3. V. V. Salomatov , S. O. Sladkov, and S. É. Pashchenko, Microwave technologies in coal power engineering, J. Eng. Phys. Thermophys., 85, No. 3, 576-592 (2012).

    Article  Google Scholar 

  4. P. V. Akulich, A. V. Temruk, and A. V. Akulich, Modeling and experimental investigation of the heat and moisture transfer in the process of microwave-convective drying of vegetable materials, J. Eng. Phys. Thermophys., 85, No. 5, 1034-1042 (2012).

    Article  Google Scholar 

  5. N. N. Grinchik, P. V. Akulich, A. L. Adamovich, P. S. Kuts, and S. P. Kundas, Modeling of the nonisothermal heat and moisture transfer in capillary-porous media in periodic microwave heating, J. Eng. Phys. Thermophys., 80, No. 1, 1-10 (2007).

    Article  Google Scholar 

  6. V. I. Anfinogentov and S. R. Ganieva, Mathematical simulation of the microwave heating of viscous liquids in the pipeline, Vestn. Kazansk. Tekhnol. Univ., 17, No. 2, 123-126 (2014).

    Google Scholar 

  7. O. A. Dotsenko, D. V. Vagner, and O. A. Kochetkova, Functional radio materials for electromagnetic compatibility of radio electronic facilities, Izv. Vyssh. Ucheb. Zaved., Fiz., 56, No. 8/2, 260-262 (2013).

    Google Scholar 

  8. Yu. A. Pirogov and A. V. Solodov, Damages of integrated microcircuits in radio-frequency radiation fi elds, Zh. Radioélektron., No. 6, 3-38 (2013).

  9. A. V. Klyuchnik, Yu. A. Pirogov, and A. V. Solodov, Methodological aspects of the investigation of the stability of integrated microcircuits in electromagnetic impulse radio-frequency radiation fields, Zh. Radioélektron., No. 8, 1-27 (2010).

  10. A. A. Kozyrev, D. A. Gorin, I. D. Kosobudskii, and G. T. Mikaelyan, Prospects of using polymer and nanocomposite materials in solid state electronics, Nano- Mikrosist. Tekh., No. 3, 9-23 (2010).

  11. Yu. A. Mikhailin, Structural Polymer Composite Materials [in Russian], Nauchnye Osnovy i Tekhnologii, St. Petersburg (2008).

    Google Scholar 

  12. Yu. V. Dement′ev, V. G. Kaplun, Yu. S. Kucherov, and A. F. Sytnik, Influence of the external microwave radiation wavelength on the stability of the elemental base of radioelectronic equipment, Radiotekhnika, No. 2, 125-126 (1996).

  13. G. M. Bartenev and Yu. V. Zelenev, The Physics and Mechanics of Polymers [in Russian], Vysshaya Shkola, Moscow (1983).

    Google Scholar 

  14. G. V. Kuznetsov and A. V. Belozertsev, Numerical simulation of the temperature fi elds of power transistors with account for the discontinuities of transfer coeffi cients, Izv. Tomsk. Politekh. Univ., 308, No. 1, 150-154 (2005).

    Google Scholar 

  15. V. V. Antipin, V. A. Godovitsyn, D. V. Gromov, and A. A. Ravaev, Degradation of low-noise microwave field transistors with a gallium arsenide Shottky gate under the action of high-power pulse microwave interferences, Radiotekhnika, No. 8, 34-38 (1994).

  16. D. V. Kuznetsov, Analysis of the degradation processes in the sensitive elements of radio electronic equipment under the influence of high-power electromagnetic radiations, Izmer. Vychisl. Tekh. Tekhnol. Prots., No. 2 (43), 101-107 (2013).

  17. Y. Xinhai, C. Changchun, R. Xingrong, X. Xi, and Y. Liu, Temperature dependence of latch-up effects in CMOS inverter induced by high power microwave, J. Semicond., 35, No. 8, 084011-1–084011-6 (2014).

    Google Scholar 

  18. E. Normand, Single-event effects in avionics, IEEE Trans. Nucl. Sci., 43 (2, PART 1), 461-474 (1996).

  19. É. M. Kartashov, B. Tsoi, and V. V. Shevelev, Structural-Statistical Destruction Kinetics of Polymers [in Russian], Khimiya, Moscow (2002).

    Google Scholar 

  20. M. E. Levinshtein, P. A. Ivanov, T. T. Mnatsakanov, J. W. Palmour, M. K. Das, and B. A. Hull, Self-heating and destruction of high-voltage 4H-SiC rectifi er diodes under a single short current surge pulse, Semiconductors, 42, No. 2, 220-227 (2008).

    Article  Google Scholar 

  21. G. V. Kuznetsov and M. A. Sheremet, New approach to the mathematical modeling of thermal regimes for electronic equipment, Russ. Microelectron., No. 2, 131-138 (2008).

  22. V. I. Anfinogentov, T. K. Garaev, and G. A. Morozov, On one problem of the theory of microwave heating of dielectics, Vestn. Kazansk. Gos. Tekh. Univ. im. A. N. Tupoleva, No. 3, 21-22 (2002).

  23. L. É. Rikenglaz, On the theory of heating dielectics by high-power electromagnetic fields, Inzh.-Fiz. Zh., 27, No. 6, 1061-1068 (1974).

    Google Scholar 

  24. P. B. Nekrasov and L. É. Rikenglaz, On the theory of adiabatic microwave field heating of a dielectric with a temperature-dependent damping coeffi cient, Zh. Tekh. Fiz., 43, No. 4, 694-697 (1973).

    Google Scholar 

  25. L. É. Rikenglaz, On the theory of propagation of microwave electromagnetic fields in dielectrics low-loss, Zh. Tekh. Fiz., 44, No. 6, 1125-1128 (1974).

    Google Scholar 

  26. V. I. Anfinogentov, Mathematical models of microwave heating of dielectrics of finite thickness, Fiz. Voln. Prots. Radiotekh. Sist., 9, No. 1, 78-83 (2006).

    Google Scholar 

  27. A. S. Nikolenko, Mathematical model of the propagation of electromagnetic waves in nanocomposites based on magnetic nanowires, Izv. Vyssh. Ucheb. Zaved., Povolzhsk. Reg., Fiz.-Mat. Nauki, No. 4 (28), 147-161 (2013).

  28. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York (1980).

    MATH  Google Scholar 

  29. K. Aparna, T. Basak, and A. R. Balakrishnan, Role of metallic and composite (ceramic-metallic) supports on microwave heating of porous dielectrics, Int. J. Heat Mass Transf., 50, Nos. 15-16, 3072-3089 (2007).

    Article  MATH  Google Scholar 

  30. S. Klayborworn, W. Pakdee, P. Rattanadecho, and S. Vongpradubchai, Effects of material properties on heating processes in two-layered porous media subjected to microwave energy, Int. J. Heat Mass Transf., 61, No. 1, 397-408 (2013).

    Article  Google Scholar 

  31. S. G. Kalganova, Influence of the microwave electromagnetic field on the hardening kinetics of epoxy resin, Vestn. Saratovsk. Gos. Tekh. Univ., 1, No. 1, 90-95 (2006).

    Google Scholar 

  32. A. A. Aksenov, S. V. Zhluktov, N. F. Kudimov, É. E. Son, M. D. Taran, O. N. Tret′yakova, and A. S. Shishaeva, On the modeling of combined heat transfer in high-power transformers, Izv. Ross. Akad. Nauk, Énerg., No. 2, 131-140 (2013).

  33. V. Ya. Bespalov, Yu. A. Moshchinskii, and V. I. Tsukanov, Simplified mathematical model of the nonstationary heating and cooling of the winding of the asynchronous engine stator, Élektrichestvo, No. 4, 20-26 (2003).

  34. P. Van Duijsen, P. Bauer, and J. Leuchter, Thermal models for semiconductors, 14th Int. Power Electronics and Motion Control Conf. (EPE/PEMC), 1, 23-28 (2010).

    Google Scholar 

  35. A. I. Borodin and A. A. Ivanova, Modeling of the temperature field of a continuously cast ingot with the determination of the position of the phase transition boundary, J. Eng. Phys. Thermophys., 87, No. 2, 507-512 (2014).

    Article  Google Scholar 

  36. A. V. Bulychev, E. Yu. Erokhin, N. D. Pozdeev, and O. A. Filichev, Thermal model of the asynchronous engine for relay protection circuits, Élektrotekhnika, No. 3, 26-30 (2011).

  37. E. C. W. Jong, J. A. Ferreira, and P. Bauer, Thermal design based on surface temperature mapping, Power Electron. Lett., IEEE, 3, 125-129 (2005).

    Article  Google Scholar 

  38. A. B. Vlasov, Quantitative thermography-based estimation of the thermal state of an electric motor, Élektrotekhnika, No. 3, 13-18 (2012).

  39. S. G. Martyushev, I. V. Miroshnichenko, and M. A. Sheremet, Numerical analysis of spatial unstable regimes of conjugate convective-radiative heat transfer in a closed volume with an energy source, J. Eng. Phys. Thermophys., 87, No. 1, 124-134 (2014).

    Article  Google Scholar 

  40. G. V. Kuznetsov and M. A. Sheremet, On the possibility of controlling thermal conditions of a typical element of electronic equipment with a local heat source via natural convection, Russ. Microelectron., No. 6, 427-442 (2010).

  41. G. V. Kuznetsov and E. V. Kravchenko, Analysis of the destruction of the polymer material of electronic devices under the conditions of spatial inhomogeneity of the temperature fields, Élektromagn. Volny Élektron. Sist., 19, No. 3, 4-12 (2014).

    Google Scholar 

  42. G. V. Kuznetsov and E. V. Kravchenko, Influence of polymer aging on reliability indices of a typical printed-circuit assembly of radioelectronic equipment, J. Eng. Phys. Thermophys., 80, No. 5, 1050-1054 (2007).

    Article  Google Scholar 

  43. E. V. Kravchenko and G. V. Kuznetsov, Prediction of power semiconductors devices reliability working in cyclic mode, EPJ Web Conf., 76, 01014 (2014).

    Article  Google Scholar 

  44. G. N. Dul′nev, Heat and Mass Transfer in Radioelectronic Equipment [in Russian], Vysshaya Shkola, Moscow (1984).

    Google Scholar 

  45. Handbook on Electrotechnical Materials, in 3 vols. [in Russian], Vol. 1, Énergiya, Moscow (1974).

  46. A. V. Berdyshev, V. F. Ivoilov, A. V. Isaikin, et al., Experimental investigations of the effect of microwave pulses on radioelectronic devices containing integrated microcircuits, Radiotekhnika, No. 6, 85-88 (2003).

  47. M. P. Gribskii, L. N. Akhramovich, E. V. Grigor′ev, et al., Effect of pulsed electromagnetic fields on the integrated microcircuits of memory, Radioélektr. Inform., 35, No. 4, 15-17 (2006).

    Google Scholar 

  48. M. P. Gribskii, E. V. Grigor′ev, V. V. Starostenko, et al., Effect of pulsed electromagnetic fields on the present-day microcontrollers, Prikl. Radioélektron., 5, No. 2, 294-297 (2006).

    Google Scholar 

  49. A. A. Borisov, V. M. Gorbacheva, G. D. Kartashov, M. N. Martynova and S. F. Prytkov, Reliability of the foreign elemental base, Zarubezhn. Radioélektron., No. 5, 34–53 (2000).

  50. E. Suhir, When adequate and predictable reliability is imperative, Microelectron. Reliab., 52 (9-10), 2342-2346 (2012).

    Article  Google Scholar 

  51. Y. Wang, M. Enachescu, S. D. Cotofana, and L. Fang, Variation tolerant on-chip degradation sensors for dynamic reliability management systems, Microelectron. Reliab., 52 (9-10), 1787−1791 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kuznetsov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 6, pp. 1336–1344, November–December, 2015.

An erratum to this article is available at http://dx.doi.org/10.1007/s10891-016-1531-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.G., Kravchenko, E.V. Influence of Microwaves on the Thermal Conditions of a "Polymer–Semiconductor–Composite" System. J Eng Phys Thermophy 88, 1381–1389 (2015). https://doi.org/10.1007/s10891-015-1323-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1323-2

Keywords

Navigation