Skip to main content
Log in

Binary Schemes of Vapor Bubble Growth

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A problem on spherically symmetric growth of a vapor bubble in an infi nite volume of a uniformly superheated liquid is considered. A description of the limiting schemes of bubble growth is presented. A binary inertial-thermal bubble growth scheme characterized by such specifi c features as the "three quarters" growth law and the effect of “pressure blocking” in a vapor phase is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Labuntsov, Physical Foundations of Power Engineering, Selected Works [in Russian], Izd. MÉI, Moscow (2000).

    Google Scholar 

  2. D. A. Labuntsov and V. V. Yagov, Mechanics of Two-Phase Systems [in Russian], Izd. MÉI, Moscow (2007).

    Google Scholar 

  3. W. H. Besant, Hydrostatics and Hydrodynamics, Cambridge University Press, Art. 158, London (1859); (W. H. Besant, A Treatise on Hydrostatics and Hydrodynamics. Reprint. London: Forgotten Books, 2010).

  4. A. Prosperetti and M. S. Plesset, Vapor bubble growth in a superheated liquid, J. Fluid Mech., 85, 349–368 (1978).

    Article  Google Scholar 

  5. C. E. Brennen, Cavitation and Bubble Dynamics, Oxford University Press, Oxford (1995).

    Google Scholar 

  6. D. A. Labuntsov, Current Views on the Bubble Boiling Mechanism. Heat Transfer and Physical Hydrodynamics [in Russian], Nauka, Moscow (1974), pp. 98–115.

    Google Scholar 

  7. L. Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, Philos. Mag., Ser. 4, 34, 94–98 (1917).

    Article  MATH  Google Scholar 

  8. T. M. Muratova and D. A. Labuntsov, Kinetic analysis of the processes of evaporation and condensation, Teplofi z. Vys. Temp., 7, No. 5, 959–967 (1969).

    Google Scholar 

  9. F. Bosnjakovic, Verdampfung und Flüssigkeitsüberhitzung, Technische Mechanik und Thermodynamik, 1, 358–362 (1930).

    Google Scholar 

  10. M. Jakob and W. Linke, Wärmeübergang beim Verdampfen von Flüssigkeiten an senkrechten und waagerechten Flächen, Phys. Z., 36, 379–384 (1935).

    Google Scholar 

  11. W. Fritz and W. Ende, Über den Verdampfungsvorgang nach kinematographischen Aufnahmen an Dampfblasen. Berechnung des Maximalvolumens von Dampfblase, Phys. Z., 37, 391–401 (1936).

    Google Scholar 

  12. M. S. Plesset and S. A. Zwick, The growth of vapor bubbles in superheated liquids, J. Appl. Phys., 25 (4), 493–500 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Birkhoff, R. Margulis, and W. Horning, Spherical bubble growth, Phys. Fluids, 1, 201–204 (1958).

    Article  MathSciNet  Google Scholar 

  14. L. E. Scriven, On the dynamics of phase growth, Chem. Eng. Sci., 10 (1/2), 1–14 (1959).

    Article  Google Scholar 

  15. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids [Russian translation], Nauka, Moscow (1964).

    Google Scholar 

  16. S. W. MCcue, B. Wu, and J. M. Hill, Classical two-phase Stefan problem for spheres, in: Proc. R. Soc. London, Ser. A — Math. Phys. Eng. Sci., 464 (2096), 2055–2076 (2008).

    MathSciNet  MATH  Google Scholar 

  17. D. A. Labuntsov and V. V. Yagov, Mechanics of Simple Gas–Liquid Structures [in Russian], Izd. MÉI, Moscow (1978).

    Google Scholar 

  18. F. C. Frank, Radially symmetric phase growth controlled by diffusion, in: Proc. R. Soc. London, Ser. A — Math. Phys. Eng. Sci., 201 (1067), 586–599 (1950).

  19. J. Papac, A. Helgadottir, C. Ratsch, and F. Gibou, A level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids, J. Comput. Phys., 233, 241–261 (2013).

    Article  MathSciNet  Google Scholar 

  20. D. A. Labuntsov, B. A. Kol′chugin, V. S. Golovin, É. A. Zakharova, and L. N. Vladimirova, High-speed ciné-photography investigation of the growth of bubbles in saturated water boiling in a wide range of pressures, Teplofi z. Vys. Temp., 2, No. 3, 446–453 (1964).

    Google Scholar 

  21. J. Straub, Boiling heat transfer and bubble dynamics in microgravity, Adv. Heat Transf., 35, 157–172 (2001).

    Google Scholar 

  22. J. Winter, Kinetik des Blasenwachstums, Dissertation, Technische Universität München, München (1997).

  23. A. A. Avdeev and Yu. B. Zudin, Thermal energetic scheme of vapor bubble growth (universal approximate solution), Teplofi z. Vys. Temp., 40, No. 2, 292–299 (2002).

    Google Scholar 

  24. A. P. Kryukov and V. Yu. Levashov, About evaporation–condensation coeffi cients on the vapor–liquid interface of high thermal conductivity matters, Int. J. Heat Mass Transf., 54, Nos. 13–14, 3042–3048 (2011).rs

    Article  MATH  Google Scholar 

  25. A. P. Kryukov, V. Yu. Levashov, and N. V. Pavlyukevich, Condensation coeffi cient: Defi nitions, estimations, modern experimental and calculation data, J. Eng. Phys. Thermophys., 87, No. 1, 237–245 (2014).

    Article  Google Scholar 

  26. B. B. Mikic, W. M. Rosenow, and P. Griffi th, On bubble growth rates, Int. J. Heat Mass Transf., 13, 657–666 (1970).

    Article  Google Scholar 

  27. V. V. Yagov, On the limiting law of growth of vapor bubbles in the region of very low pressures (high Jacob numbers), Teplofi z. Vys. Temp., 26, No. 2, 335–341 (1988). 586

    Google Scholar 

  28. A. V. Korabel′nikov, V. E. Nakoryakov, and I. R. Shraiber, Taking account of nonequilibrium evaporation in the problems of the vapor bubble dynamics, Teplofi z. Vys. Temp., 19, No. 4, 785–797 (1981).

    Google Scholar 

  29. S. P. Aktershev, Growth of a vapor bubble in an extremely superheated liquid, Teplofi z. Aéromekh., 12, No. 3, 445–457 (2005).

    Google Scholar 

  30. V. P. Skripov, Metastable Liquid [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  31. Y. B. Zudin, Blasenwachstum im Bereich des Dampfdruckverschlusses, Jahresbericht der Universität Paderborn, Fakultät für Maschinenbau, Institut für Energie- und Verfahrenstechnik (2003), S. 22–25.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Zudin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 3, pp. 559–569, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zudin, Y.B. Binary Schemes of Vapor Bubble Growth. J Eng Phys Thermophy 88, 575–586 (2015). https://doi.org/10.1007/s10891-015-1225-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1225-3

Keywords

Navigation